Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(12): 11496-11502, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33041021

RESUMO

The objective of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), an enteric methane inhibitor under investigation, on short-term dry matter intake (DMI) in lactating dairy cows. Following a 1-wk adaptation period, 12 multiparous Holstein cows were fed a basal total mixed ration (TMR) containing increasing levels of 3-NOP during 5 consecutive, 6-d periods. The experiment was conducted in a tiestall barn. Feed bins were split in half by a solid divider, and cows simultaneously received the basal TMR supplemented with the following: (1) a placebo without 3-NOP or (2) 3-NOP included in the TMR at 30, 60, 90, or 120 mg/kg of feed dry matter (experimental periods 2, 3, 4, and 5, respectively). Cows received the control diet (basal TMR plus placebo premix) during experimental period 1. A premix containing ground corn grain, soybean oil, and dry molasses was used to incorporate 3-NOP in the ration. Cows were fed twice daily as follows: 60% of the daily feed allowance at 0800 h and 40% at 1800 h. Feed offered and refused was recorded at each feeding. During the morning feedings, each cow was offered either control or 3-NOP-treated TMR at 150% of her average intake during the previous 3 d. After collection of the evening refusals, cows received only the basal TMR without the premix until the next morning feeding. The test period for the short-term DMI data collection was defined from morning feeding to afternoon refusals collection during each day of each experimental period. Location (left or right) of the control and 3-NOP diets within a feed bin was switched every day during each period to avoid feed location bias. Dry matter intake of TMR during the test period was quadratically increased by 3-NOP compared with the control. Inclusion of 3-NOP at 120 mg/kg of feed dry matter resulted in decreased 10-h DMI compared with the lower 3-NOP doses, but was similar to the control. There was no effect of feed location (left or right) within feed bin on DMI. Data from this short-term study suggests that 3-NOP does not have a negative effect on DMI in lactating dairy cows.


Assuntos
Ração Animal , Suplementos Nutricionais , Metano/antagonistas & inibidores , Propanóis/farmacologia , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Lactação , Leite , Melaço
2.
Molecules ; 25(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604804

RESUMO

Condensed tannins (CTs) are plant anti-herbivore compounds with antimicrobial activity that can be used in ruminant diets as ruminal microbiome manipulators. However, not all CTs from fodder legumes are bioactive due to their wide structural diversity. The aim of our study was to investigate the effect of 10 CT-containing plants (Flemingia macrophylla, Leucaena leucocephala, Stylosanthes guianensis, Gliricidia sepium, Cratylia argentea, Cajanus cajan, Desmodium ovalifolium, Macrotiloma axilare, D. paniculatum, and Lespedeza procumbens) on in vitro fermentation kinetics of Nelore beef cattle. Polyethylene glycol (PEG), a specific CT-binding agent, was added to neutralize condensed tannin. Tifton and alfalfa hay were used as controls lacking CT. The experimental layout included a randomized complete block with factorial design and four blocks. The data were subjected to analysis of variance followed by Duncan's test to determine differences (p < 0.05) among treatment means. The addition of PEG in browse incubations resulted in increased gas production, fermentation rate, short-chain fatty acid (SCFA) and N-NH3 release. Within our study, Lespedeza procumbens, Desmodium paniculatum, Leucaena leucocephala, Desmodium ovalifolium, and Flemingia macrophylla showed superior bioactivity compared to other species evaluated, suggesting a natural alternative for replacing ionophores to modify ruminal fermentation. Condensed tannins from L. pocumbens, D. paniculatum, L. leucocephala, D. ovalifolium, and F. macrophylla have the potential to modify rumen fermentation in beef cattle.


Assuntos
Fabaceae/química , Proantocianidinas/farmacologia , Rúmen/metabolismo , Análise de Variância , Animais , Bovinos , Fabaceae/classificação , Ácidos Graxos Voláteis/metabolismo , Fermentação , Gado , Polietilenoglicóis/química , Rúmen/efeitos dos fármacos
3.
J Dairy Sci ; 103(7): 6145-6156, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32278563

RESUMO

This experiment was designed to test the effect of inclusion rate of 3-nitrooxypropanol (3-NOP), a methane inhibitor, on enteric methane emissions in dairy cows. The study was conducted with 49 multiparous Holstein cows in a randomized complete block design in 2 phases; phase 1 was with 28 cows, and phase 2 with 21 cows. Cows were fed a basal total mixed ration ad libitum and were blocked based on days in milk, milk yield, and enteric methane emissions during a 14-d covariate period. Treatments were control (no 3-NOP) and 40, 60, 80, 100, 150, and 200 mg of 3-NOP/kg of feed dry matter. Following a 14-d adaptation period, enteric gaseous emissions (methane, carbon dioxide, and hydrogen) were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD) over a 3-d period. Compared with the control, inclusion rate of 3-NOP quadratically decreased daily enteric methane emissions from 22 to 40%. Maximum mitigation effect was achieved with the 3 highest 3-NOP doses (with no statistical difference among 100, 150, and 200 mg/kg). The decrease in methane emission yield and emission intensity ranged from 16 to 36% and from 25 to 45%, respectively. Emissions of hydrogen quadratically increased 6- to 10-fold, compared with the control; the maximum increase was with 150 mg/kg 3-NOP. Treatment did not affect daily emissions of carbon dioxide, but a linear increase in carbon dioxide emission yield was observed with increasing 3-NOP doses. Dry matter intake and milk yield of the cows was not affected by 3-NOP. Milk fat concentration and yield were increased by 3-NOP due to increased concentration of de novo synthetized short-chain fatty acids in milk. Inclusion of 3-NOP also tended to increase milk urea nitrogen but had no other effects on milk components. In this short-term experiment, 3-NOP decreased enteric methane emissions without affecting dry matter intake or milk yield and increased milk fat in dairy cows. Maximum mitigation effect was achieved at 100 to 200 mg/kg of feed dry matter.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Metano/biossíntese , Propanóis/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Lactação/efeitos dos fármacos , Leite/química , Rúmen/química
4.
J Dairy Sci ; 102(5): 4165-4178, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30879826

RESUMO

The present study aimed to evaluate the effect of crude protein degradability and corn processing on lactation performance, milk protein composition, milk ethanol stability (MES), heat coagulation time (HCT) at 140°C, and the efficiency of N utilization for dairy cows. Twenty Holstein cows with an average of 162 ± 70 d in milk, 666 ± 7 kg of body weight, and 36 ± 7.8 kg/d of milk yield (MY) were distributed in a Latin square design with 5 contemporaneous balanced squares, 4 periods of 21 d, and 4 treatments (factorial arrangement 2 × 2). Treatment factor 1 was corn processing [ground (GC) or steam-flaked corn (SFC)] and factor 2 was crude protein (CP) degradability (high = 10.7% rumen-degradable protein and 5.1% rumen-undegradable protein; low = 9.5% rumen-degradable protein and 6.3% rumen-undegradable protein; dry matter basis). A significant interaction was observed between CP degradability and corn processing on dry matter intake (DMI). When cows were fed GC with low CP degradability, DMI increased by 1.24 kg/d compared with cows fed GC with high CP degradability; however, CP degradability did not change DMI when cows were fed SFC. Similar interactions were observed for MY, HCT, and lactose content. When cows were fed GC diets, high CP degradability reduced MY by 2.3 kg/d, as well as HCT and lactose content, compared with low CP degradability. However, no effect of CP degradability was observed on those variables when cows were fed SFC diets. The SFC diets increased dry matter and starch total-tract digestibility and reduced ß-casein (CN) content (% total milk protein) compared with GC diets. Cows fed low-CP degradability diets had higher glycosylated κ-CN content (% total κ-CN) and MES, as well as milk protein content, 3.5% fat-corrected milk, and efficiency of N for milk production, than cows fed high-CP degradability diets. Therefore, GC and high-CP degradability diets reduced milk production and protein stability. Overall, low CP degradability increased the efficiency of dietary N utilization and MES, probably due to changes in casein micelle composition, as CP degradability or corn processing did not change the milk concentration of ionic calcium. The GC diets increased ß-CN content, which could contribute to reducing HTC when cows were fed GC and high-CP degradability diets.


Assuntos
Ração Animal , Bovinos , Dieta/veterinária , Proteínas Alimentares/metabolismo , Lactação , Proteínas do Leite/química , Zea mays , Ração Animal/análise , Animais , Proteínas Alimentares/administração & dosagem , Feminino , Lactose/metabolismo , Leite/química , Rúmen/metabolismo , Amido/metabolismo
5.
Animal ; 10(1): 64-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26289745

RESUMO

The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on ruminal fermentation, total apparent digestibility, blood and renal metabolism of lactating dairy cows. Sixteen Holstein cows were distributed in four contemporary 4×4 Latin Square designs, which consisted of four periods of 21 days and four treatments according to DCAD: +290; +192; +98 and -71 milliequivalent (mEq)/kg dry matter (DM). Ruminal pH and concentrations of acetic and butyric acid increased linearly according to the increase of DCAD. Similarly, NDF total apparent digestibility linearly increased by 6.38% when DCAD increased from -71 to 290 mEq/kg DM [Y=65.90 (SE=2.37)+0.0167 (SE=0.0068)×DCAD (mEq/kg DM)]. Blood pH was also increased according to DCAD, which resulted in reduction of serum concentrations of Na, K and ionic calcium (iCa). To maintain the blood acid-base homeostasis, renal metabolism played an important role in controlling serum concentrations of Na and K, since the Na and K urinary excretion increased linearly by 89.69% and 46.06%, respectively, from -71 to 290 mEq/kg DM. Changes in acid-base balance of biological fluids may directly affect the mineral composition of milk, as milk concentrations of Na, K, iCa and chlorides were reduced according to blood pH increased. Thus, it can be concluded that the increase of DCAD raises the pH of ruminal fluid, NDF total apparent digestibility, and blood pH, and decreases the milk concentration of cationic minerals, as well as the efficiency of Na utilization to milk production.


Assuntos
Ânions/química , Cátions/química , Bovinos/fisiologia , Dieta/veterinária , Leite/química , Equilíbrio Ácido-Base , Animais , Ânions/administração & dosagem , Cátions/administração & dosagem , Dieta/normas , Digestão , Feminino , Fermentação , Rim/metabolismo , Lactação , Minerais/análise
6.
J Dairy Sci ; 98(4): 2650-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25622868

RESUMO

Casein micelle stability is negatively correlated with milk concentrations of ionic calcium, which may change according to the metabolic and nutritional status of dairy cows. The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on concentrations of casein subunits, whey proteins, ionic calcium, and milk heat and ethanol stability. Sixteen Holstein cows were distributed in 4 contemporary 4 × 4 Latin square designs, which consisted of 4 periods of 21 d and 4 treatments according to DCAD: 290, 192, 98, and -71 mEq/kg of dry matter (DM). The milk concentrations of ionic calcium and κ-casein were reduced as DCAD increased, whereas the milk urea nitrogen and ß-lactoglobulin concentrations were increased. As a result of these alterations, the milk ethanol stability and milk stability during heating at 140 °C were increased linearly with increasing DCAD [Y = 74.87 (standard error = 0.87) + 0.01174 (standard error = 0.0025) × DCAD (mEq/kg of DM) and Y = 3.95 (standard error = 1.02) + 0.01234 (standard error = 0.0032) × DCAD (mEq/kg of DM), respectively]. In addition, 3.5% fat-corrected milk and fat, lactose, and total milk solids contents were linearly increased by 13.52, 8.78, 2.5, and 2.6%, respectively, according to DCAD increases from -71 to 290 mEq/kg of DM, whereas crude protein and casein content were linearly reduced by 4.83 and 4.49%, respectively. In conclusion, control of metabolic changes in lactating dairy cows to maintain blood acid-base equilibrium plays an important role in keeping milk stable to ethanol and during heat treatments.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/fisiologia , Lactação , Leite/química , Animais , Ânions/metabolismo , Cálcio/análise , Caseínas/química , Cátions/metabolismo , Feminino , Íons/análise , Proteínas do Soro do Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA