Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(37): e2203230119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067290

RESUMO

Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests.


Assuntos
Mudança Climática , Mariposas , Estações do Ano , Animais , Dinâmica Populacional , Temperatura
2.
Pest Manag Sci ; 78(11): 4929-4938, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054536

RESUMO

BACKGROUND: Invasive species threaten the productivity and stability of natural and managed ecosystems. Predicting the spread of invaders, which can aid in early mitigation efforts, is a major challenge, especially in the face of climate change. While ecological niche models are effective tools to assess habitat suitability for invaders, such models have rarely been created for invasive pest species with rapidly expanding ranges. Here, we leveraged a national monitoring effort from 543 sites over 3 years to assess factors mediating the occurrence and abundance of brown marmorated stink bug (BMSB, Halyomorpha halys), an invasive insect pest that has readily established throughout much of the United States. RESULTS: We used maximum entropy models to estimate the suitable habitat of BMSB under several climate scenarios, and generalized boosted models to assess environmental factors that regulated BMSB abundance. Our models captured BMSB distribution and abundance with high accuracy, and predicted a 70% increase in suitable habitat under future climate scenarios. However, environmental factors that mediated the geographical distribution of BMSB were different from those driving abundance. While BMSB occurrence was most affected by winter precipitation and proximity to populated areas, BMSB abundance was influenced most strongly by evapotranspiration and solar photoperiod. CONCLUSION: Our results suggest that linking models of establishment (occurrence) and population dynamics (abundance) offers a more effective way to forecast the spread and impact of BMSB and other invasive species than simply occurrence-based models, allowing for targeted mitigation efforts. Implications of distribution shifts under climate change are discussed. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ecossistema , Heterópteros , Animais , Mudança Climática , Espécies Introduzidas , Dinâmica Populacional , Estados Unidos
3.
J Econ Entomol ; 113(2): 1043-1046, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31904853

RESUMO

Brown marmorated stink bug, Halyomorpha halys (Stål), is an invasive species in the United States that attacks a wide variety of agricultural commodities including fruits, vegetables, agronomic crops, and ornamental plants. Populations of H. halys adults were collected from four and six states in 2017 and 2018, respectively, and tested using topical applications to establish baseline levels of susceptibility to two commonly used insecticides, bifenthrin and thiamethoxam. A Probit-estimated (95% fiducial limits) LD50 and LD99 of 2.64 g AI/L (1.2-3.84 g AI/L) and 84.96 g AI/L (35.76-716.16 g AI/L) for bifenthrin, and a LD50 and LD99 of 0.05 g AI/liter (1.14E-5-0.27 g AI/L) and 150.11 g AI/L (27.35-761,867 g AI/L) for thiamethoxam, respectively. These baseline levels can be used for future insecticide resistance monitoring in H. halys.


Assuntos
Heterópteros , Inseticidas , Piretrinas , Animais , Tiametoxam , Estados Unidos
4.
J Econ Entomol ; 113(1): 159-171, 2020 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-31502635

RESUMO

Reliable monitoring of the invasive Halyomorpha halys abundance, phenology and geographic distribution is critical for its management. Halyomorpha halys adult and nymphal captures on clear sticky traps and in black pyramid traps were compared in 18 states across the Great Lakes, Mid-Atlantic, Southeast, Pacific Northwest and Western regions of the United States. Traps were baited with commercial lures containing the H. halys pheromone and synergist, and deployed at field sites bordering agricultural or urban locations with H. halys host plants. Nymphal and adult captures in pyramid traps were greater than those on sticky traps, but captures were positively correlated between the two trap types within each region and during the early-, mid- and late season across all sites. Sites were further classified as having a low, moderate or high relative H. halys density and again showed positive correlations between captures for the two trap types for nymphs and adults. Among regions, the greatest adult captures were recorded in the Southeast and Mid-Atlantic on pyramid and sticky traps, respectively, with lowest captures recorded in the West. Nymphal captures, while lower than adult captures, were greatest in the Southeast and lowest in the West. Nymphal and adult captures were, generally, greatest during July-August and September-October, respectively. Trapping data were compared with available phenological models showing comparable population peaks at most locations. Results demonstrated that sticky traps offer a simpler alternative to pyramid traps, but both can be reliable tools to monitor H. halys in different geographical locations with varying population densities throughout the season.


Assuntos
Heterópteros , Animais , Ninfa , Feromônios , Densidade Demográfica , Estações do Ano , Estados Unidos
5.
Environ Entomol ; 44(3): 746-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26313981

RESUMO

A recent identification of the two-component aggregation pheromone of the invasive stink bug species, Halyomorpha halys (Stål), in association with a synergist, has greatly improved the ability to accurately monitor the seasonal abundance and distribution of this destructive pest. We evaluated the attraction of H. halys to black pyramid traps baited with lures containing the pheromone alone, the synergist methyl (2E,4E,6Z)-decatrienoate (MDT) alone, and the two lures in combination. Traps were deployed around areas of agricultural production including fruit orchards, vegetables, ornamentals, or row crops in Delaware, Maryland, North Carolina, New Jersey, New York, Ohio, Oregon, Pennsylvania, Virginia, and West Virginia from mid-April to mid-October, 2012 and 2013. We confirmed that H. halys adults and nymphs are attracted to the aggregation pheromone season long, but that attraction is significantly increased with the addition of the synergist MDT. H. halys adults were detected in April with peak captures of overwintering adults in mid- to late May. The largest adult captures were late in the summer, typically in early September. Nymphal captures began in late May and continued season long. Total captures declined rapidly in autumn and ceased by mid-October. Captures were greatest at locations in the Eastern Inland region, followed by those in the Eastern Coastal Plain and Pacific Northwest. Importantly, regardless of location in the United States, all mobile life stages of H. halys consistently responded to the combination of H. halys aggregation pheromone and the synergist throughout the entire season, suggesting that these stimuli will be useful tools to monitor for H. halys in managed systems.


Assuntos
Diterpenos/farmacologia , Heterópteros/efeitos dos fármacos , Controle de Insetos/métodos , Feromônios/farmacologia , Animais , Quimiotaxia , Clima , Heterópteros/crescimento & desenvolvimento , Heterópteros/fisiologia , Ninfa/efeitos dos fármacos , Ninfa/fisiologia , Densidade Demográfica , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA