Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 81: 102525, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39190937

RESUMO

Membrane vesicles (MVs) are produced in all domains of life. In eukaryotes, extracellular vesicles have been shown to mediate the horizontal transfer of biological material between cells [1]. Therefore, bacterial MVs are also thought to mediate horizontal material transfer to host cells and other bacteria, especially in the context of cell stress. In this review, we discuss the mechanisms of bacterial MV production, evidence that their contents can be trafficked to host cells and other bacteria, and the biological relevance of horizontal material transfer by bacterial MVs.


Assuntos
Bactérias , Vesículas Extracelulares , Transferência Genética Horizontal , Bactérias/genética , Bactérias/metabolismo , Vesículas Extracelulares/metabolismo , Membrana Celular/metabolismo
2.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39211270

RESUMO

Microbiota-derived metabolites have emerged as key regulators of longevity. The metabolic activity of the gut microbiota, influenced by dietary components and ingested chemical compounds, profoundly impacts host fitness. While the benefits of dietary prebiotics are well-known, chemically targeting the gut microbiota to enhance host fitness remains largely unexplored. Here, we report a novel chemical approach to induce a pro-longevity bacterial metabolite in the host gut. We discovered that specific Escherichia coli strains overproduce colanic acids (CAs) when exposed to a low dose of cephaloridine, leading to an increased lifespan in host Caenorhabditis elegans . In the mouse gut, oral administration of low-dose cephaloridine induces the transcription of the capsular biosynthesis operon responsible for CA biosynthesis in commensal E. coli , which overcomes the inhibition of CA biosynthesis above 30°C and enables its induction directly from the microbiota. Importantly, low-dose cephaloridine induces CA independently of its antibiotic properties through a previously unknown mechanism mediated by the membrane-bound histidine kinase ZraS. Our work lays the foundation for microbiota-based therapeutics through the chemical modulation of bacterial metabolism and reveals the promising potential of bacteria-targeting drugs in promoting host longevity.

3.
Nat Microbiol ; 9(5): 1382-1392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649410

RESUMO

RNA viruses, like SARS-CoV-2, depend on their RNA-dependent RNA polymerases (RdRp) for replication, which is error prone. Monitoring replication errors is crucial for understanding the virus's evolution. Current methods lack the precision to detect rare de novo RNA mutations, particularly in low-input samples such as those from patients. Here we introduce a targeted accurate RNA consensus sequencing method (tARC-seq) to accurately determine the mutation frequency and types in SARS-CoV-2, both in cell culture and clinical samples. Our findings show an average of 2.68 × 10-5 de novo errors per cycle with a C > T bias that cannot be solely attributed to APOBEC editing. We identified hotspots and cold spots throughout the genome, correlating with high or low GC content, and pinpointed transcription regulatory sites as regions more susceptible to errors. tARC-seq captured template switching events including insertions, deletions and complex mutations. These insights shed light on the genetic diversity generation and evolutionary dynamics of SARS-CoV-2.


Assuntos
COVID-19 , Genoma Viral , Mutação , RNA Viral , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/genética , Humanos , Replicação Viral/genética , COVID-19/virologia , Genoma Viral/genética , RNA Viral/genética , Análise de Sequência de RNA/métodos , Evolução Molecular , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA