Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 224: 103-116, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173893

RESUMO

Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.

2.
Am J Physiol Cell Physiol ; 326(5): C1367-C1383, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406826

RESUMO

Age-related macular degeneration (AMD) is characterized by the degenerative senescence in the retinal pigment epithelium (RPE) and photoreceptors, which is accompanied by the accumulation of iron ions in the aging retina. However, current models of acute oxidative stress are still insufficient to simulate the gradual progression of AMD. To address this, we established chronic injury models by exposing the aRPE-19 cells, 661W cells, and mouse retina to iron ion overload over time. Investigations at the levels of cell biology and molecular biology were performed. It was demonstrated that long-term treatment of excessive iron ions induced senescence-like morphological changes, decreased cell proliferation, and impaired mitochondrial function, contributing to apoptosis. Activation of the mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were confirmed both in the aRPE-19 and 661W cells. Furthermore, iron ion overload resulted in dry AMD-like lesions and decreased visual function in the mouse retina. These findings suggest that chronic exposure to overloading iron ions plays a significant role in the pathogenesis of retinopathy and provide a potential model for future studies on AMD.NEW & NOTEWORTHY To explore the possibility of constructing reliable research carriers on age-related macular degeneration (AMD), iron ion overload was applied to establish models in vitro and in vivo. Subsequent investigations into cellular physiology and molecular biology confirmed the presence of senescence in these models. Through this study, we hope to provide a better option of feasible methods for future researches into AMD.


Assuntos
Modelos Animais de Doenças , Ferro , Degeneração Macular , Epitélio Pigmentado da Retina , Animais , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Camundongos , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Apoptose , Estresse Oxidativo , Linhagem Celular , Senescência Celular , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Proliferação de Células , Retina/metabolismo , Retina/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia
3.
Exp Eye Res ; 233: 109524, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290629

RESUMO

Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is a potential regulator of photoreceptor development. To investigate the mechanisms underlying MAP4K4 during the neuronal development of retinal photoreceptors, we generated knockout models of C57BL/6j mice in vivo and 661 W cells in vitro. Our findings revealed homozygous lethality and neural tube malformation in mice subjected to Map4k4 DNA ablation, providing evidence for the involvement of MAP4K4 in early stage embryonic neural formation. Furthermore, our study demonstrated that the ablation of Map4k4 DNA led to the vulnerability of photoreceptor neurites during induced neuronal development. By monitoring transcriptional and protein variations in mitogen-activated protein kinase (MAPK) signaling pathway-related factors, we discovered an imbalance in neurogenesis-related factors in Map4k4 -/- cells. Specifically, MAP4K4 promotes jun proto-oncogene (c-JUN) phosphorylation and recruits other factors related to nerve growth, ultimately leading to the robust formation of photoreceptor neurites. These data suggest that MAP4K4 plays a decisive role in regulating the fate of retinal photoreceptors through molecular modulation and contributes to our understanding of vision formation.


Assuntos
Neurogênese , Transdução de Sinais , Animais , Camundongos , DNA , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados , Quinase Induzida por NF-kappaB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA