Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cancer Gene Ther ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048663

RESUMO

The incidence of hepatocellular carcinoma (HCC) has continued to increase annually worldwide, and HCC has become a common cause of cancer-related death. Despite great progress in understanding the molecular mechanisms underlying HCC development, the treatment of HCC remains a considerable challenge. Thus, the survival and prognosis of HCC patients remain extremely poor. In recent years, the role of ion channels in the pathogenesis of diseases has become a hot topic. In normal liver tissue, ion channels and transporters maintain water and electrolyte balance and acid‒base homeostasis. However, dysfunction of these ion channels and transporters can lead to the development and progression of HCC, and thus these ion channels and transporters are expected to become new therapeutic targets. In this review, ion channels and transporters associated with HCC are reviewed, and potential targets for new and effective therapies are proposed.

2.
Int J Mol Med ; 54(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785162

RESUMO

Lactate is a byproduct of glycolysis, and before the Warburg effect was revealed (in which glucose can be fermented in the presence of oxygen to produce lactate) it was considered a metabolic waste product. At present, lactate is not only recognized as a metabolic substrate that provides energy, but also as a signaling molecule that regulates cellular functions under pathophysiological conditions. Lactylation, a post­translational modification, is involved in the development of various diseases, including inflammation and tumors. Liver disease is a major health challenge worldwide. In normal liver, there is a net lactate uptake caused by gluconeogenesis, exhibiting a higher net lactate clearance rate compared with any other organ. Therefore, abnormalities of lactate and lactate metabolism lead to the development of liver disease, and lactate and lactate metabolism­related genes can be used for predicting the prognosis of liver disease. Targeting lactate production, regulating lactate transport and modulating lactylation may be potential treatment approaches for liver disease. However, currently there is not a systematic review that summarizes the role of lactate and lactate metabolism in liver diseases. In the present review, the role of lactate and lactate metabolism in liver diseases including liver fibrosis, non­alcoholic fatty liver disease, acute liver failure and hepatocellular carcinoma was summarized with the aim to provide insights for future research.


Assuntos
Ácido Láctico , Hepatopatias , Humanos , Ácido Láctico/metabolismo , Hepatopatias/metabolismo , Animais , Fígado/metabolismo , Fígado/patologia
3.
Drug Dev Res ; 85(4): e22198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764200

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The prevention and therapy for this deadly disease remain a global medical challenge. In this study, we investigated the effect of pantoprazole (PPZ) on the carcinogenesis and growth of HCC. Both diethylnitrosamine (DEN) plus CCl4-induced and DEN plus high fat diet (HFD)-induced HCC models in mice were established. Cytokines and cell proliferation-associated gene in the liver tissues of mice and HCC cells were analyzed. Cellular glycolysis and Na+/H+ exchange activity were measured. The preventive administration of pantoprazole (PPZ) at a clinically relevant low dose markedly suppressed HCC carcinogenesis in both DEN plus CCl4-induced and HFD-induced murine HCC models, whereas the therapeutic administration of PPZ at the dose suppressed the growth of HCC. In the liver tissues of PPZ-treated mice, inflammatory cytokines, IL1, CXCL1, CXCL5, CXCL9, CXCL10, CCL2, CCL5, CCL6, CCL7, CCL20, and CCL22, were reduced. The administration of CXCL1, CXCL5, CCL2, or CCL20 all reversed PPZ-suppressed DEN plus CCL4-induced HCC carcinogenesis in mice. PPZ inhibited the expressions of CCNA2, CCNB2, CCNE2, CDC25C, CDCA5, CDK1, CDK2, TOP2A, TTK, AURKA, and BIRC5 in HCC cells. Further results showed that PPZ reduced the production of these inflammatory cytokines and the expression of these cell proliferation-associated genes through the inhibition of glycolysis and Na+/H+ exchange. In conclusion, PPZ suppresses the carcinogenesis and growth of HCC, which is related to inhibiting the production of inflammatory cytokines and the expression of cell proliferation-associated genes in the liver through the inhibition of glycolysis and Na+/H+ exchange.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Glicólise , Neoplasias Hepáticas , Pantoprazol , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Glicólise/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Camundongos , Pantoprazol/farmacologia , Masculino , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Carcinogênese/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Citocinas/metabolismo , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos
4.
Cell Death Discov ; 10(1): 123, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461207

RESUMO

Solute carrier family 26 member 9 (SLC26A9) is a member of the Slc26a family of multifunctional anion transporters that functions as a Cl- channel in parietal cells during acid secretion. We explored the role of SLC26A9 in colorectal cancer (CRC) and its related mechanisms through clinical samples from CRC patients, CRC cell lines and mouse models. We observed that SLC26A9 was expressed at low levels in the cytoplasm of adjacent tissues, polyps and adenomas but was significantly increased in colorectal adenocarcinoma. Moreover, increased levels of SLC26A9 were associated with a high risk of disease and poor prognosis. In addition, downregulation of SLC26A9 in CRC cells induced cell cycle arrest and apoptosis but inhibited cell proliferation and xenograft tumor growth both in vitro and in vivo. Mechanistic analysis revealed that SLC26A9 was colocalized with ß-catenin in the nucleus of CRC cells. The translocation of these two proteins from the cytoplasm to the nucleus reflected the activation of Wnt/ß-catenin signaling, and promoted the transcription of downstream target proteins, including CyclinD1, c-Myc and Snail, but inhibited the expression of cytochrome C (Cyt-c), cleaved Caspase9, cleaved Caspase3 and apoptosis-inducing factor (AIF). CRC is accompanied by alteration of epithelial mesenchymal transition (EMT) markers. Meanwhile, further studies showed that in SW48 cells, overexpressing SLC26A9 was cocultured with the ß-catenin inhibitor XAV-939, ß-catenin was downregulated, and EMT was reversed. Our study demonstrated SLC26A9 may be responsible for alterations in the proliferative ability and aggressive potential of CRC by regulating the Wnt/ß-catenin signaling pathway.

5.
Hepatol Commun ; 7(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655980

RESUMO

BACKGROUND: S100 calcium-binding protein A6 (S100A6) is a calcium-binding protein that is involved in a variety of cellular processes, such as proliferation, apoptosis, and the cellular response to various stress stimuli. However, its role in NAFLD and associated metabolic diseases remains uncertain. METHODS AND RESULTS: In this study, we revealed a new function and mechanism of S100A6 in NAFLD. S100A6 expression was upregulated in human and mouse livers with hepatic steatosis, and the depletion of hepatic S100A6 remarkably inhibited lipid accumulation, insulin resistance, inflammation, and obesity in a high-fat, high-cholesterol (HFHC) diet-induced murine hepatic steatosis model. In vitro mechanistic investigations showed that the depletion of S100A6 in hepatocytes restored lipophagy, suggesting S100A6 inhibition could alleviate HFHC-induced NAFLD. Moreover, S100A6 liver-specific ablation mediated by AAV9 alleviated NAFLD in obese mice. CONCLUSIONS: Our study demonstrates that S100A6 functions as a positive regulator of NAFLD, targeting the S100A6-lipophagy axis may be a promising treatment option for NAFLD and associated metabolic diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteína A6 Ligante de Cálcio S100 , Animais , Humanos , Camundongos , Apoptose , Autofagia , Proteínas de Ligação ao Cálcio/genética , Proteína A6 Ligante de Cálcio S100/metabolismo
6.
Biomed Pharmacother ; 163: 114792, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121148

RESUMO

Hepatocellular carcinoma is the most common type of liver cancer and associated with a high fatality rate. This disease poses a major threat to human health worldwide. A considerable number of genetic and epigenetic factors are involved in the development of hepatocellular carcinoma. However, the molecular mechanism underlying the progression of hepatocellular carcinoma remains unclear. Karyopherin subunit alpha 2 (KPNA2), also termed importin α1, is a member of the nuclear transporter family. In recent years, KPNA2 has been gradually linked to the nuclear transport pathway for a variety of tumor-associated proteins. Furthermore, it promotes tumor development by participating in various pathophysiological processes such as cell proliferation, apoptosis, immune response, and viral infection. In hepatocellular carcinoma, it has been found that KPNA2 expression is significantly higher in liver cancer tissues versus paracancerous tissues. Moreover, it has been identified as a marker of poor prognosis and early recurrence in patients with hepatocellular carcinoma. Nevertheless, the role of KPNA2 in the development of hepatocellular carcinoma remains to be determined. This review summarizes the current knowledge on the pathogenesis and role of KPNA2 in hepatocellular carcinoma, and provides new directions and strategies for the diagnosis, treatment, and prediction of prognosis of this disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Transporte Ativo do Núcleo Celular , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carioferinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia
7.
Int J Mol Med ; 51(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36660939

RESUMO

Besides causing severe acute respiratory syndrome (SARS), SARS­coronavirus 2 (SARS­CoV­2) also harms the digestive system. Given the appearance of numerous cases of SARS­CoV­2, it has been demonstrated that SARS­CoV­2 is able to harm target organs such as the gastrointestinal tract, liver and pancreas, and either worsen the condition of patients with basic digestive illnesses or make their prognosis poor. According to several previously published studies, angiotensin­converting enzyme II (ACE2) and transmembrane serine protease II (TMPRSS2) are expressed either singly or in combination in the digestive system and in other regions of the human body. In order to change the viral conformation, create a fusion hole and release viral RNA into the host cell for replication and transcription, SARS­CoV­2 is capable of binding to these two proteins through the spike protein on its surface. As a result, the body experiences an immune reaction and an inflammatory reaction, which may lead to nausea, diarrhea, abdominal pain and even gastrointestinal bleeding, elevated levels of liver enzymes, acute liver injury, pancreatitis and other serious lesions. In order to provide possible strategies for the clinical diagnosis and treatment of digestive system diseases during the COVID­19 pandemic, the molecular structure of SARS­CoV­2 and the mechanism via which SARS­CoV­2 enters the human body through ACE2 and TMPRSS2 were discussed in the present review, and the clinical manifestations of SARS­CoV­2 infection in the digestive system were also summarized. Finally, the expression characteristics of ACE2 and TMPRSS2 in the main target organs of the digestive system were described.


Assuntos
COVID-19 , Doenças do Sistema Digestório , Humanos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/complicações , Pandemias , SARS-CoV-2 , Doenças do Sistema Digestório/virologia
8.
Front Oncol ; 12: 996115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203448

RESUMO

Liver cancer is one of the most common cancers in the world, and the rate of liver cancer is high due to the of its illness. The main risk factor for liver cancer is infection with the hepatitis B virus (HBV), but a considerable number of genetic and epigenetic factors are also directly or indirectly involved in the underlying pathogenesis of liver cancer. In particular, the apolipoprotein B mRNA editing enzyme, catalytic peptide-like protein (APOBEC) family (DNA or mRNA editor family), which has been the focus of virology research for more than a decade, has been found to play a significant role in the occurrence and development of various cancers, providing a new direction for the research of liver cancer. APOBEC3B is a cytosine deaminase that controls a variety of biological processes, such as protein expression, innate immunity, and embryonic development, by participating in the process of cytidine deamination to uridine in DNA and RNA. In humans, APOBEC3B has long been known as a DNA editor for limiting viral replication and transcription. APOBEC3B is widely expressed at low levels in a variety of normal tissues and organs, but it is significantly upregulated in different types of tumor tissues and tumor lines. Thus, APOBEC3B has received increasing attention in various cancers, but the role of APOBEC3B in the occurrence and development of liver cancer due to infection with HBV remains unclear. This review provides a brief introduction to the pathogenesis of hepatocellular carcinoma induced by HBV, and it further explores the latest results of APOBEC3B research in the development of HBV and liver cancer, thereby providing new directions and strategies for the treatment and prevention of liver cancer.

9.
Int J Mol Med ; 50(5)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36222304

RESUMO

Integrins allow cells to adhere to the extracellular matrix and promote the recruitment of other integrins, resulting in the formation of focal adhesion sites at the binding sites. Focal adhesion sites play essential roles in the assembly of the cytoskeleton and are vital in shaping the structure of cells. They also play other regulatory roles by influencing numerous biological functions, such as cell proliferation and apoptosis. Hydrogen peroxide­inducible clone 5 (Hic­5) is a member of the Paxillin family of proteins and is an adhesive plaque scaffolding protein. Its expression can be detected in both vascular and smooth muscle cells. Thus, it plays an essential role in vascular remodeling, as well as in fibrotic diseases. Hic­5 functions as a coactivator of steroid receptors, thus playing a role in steroid hormone­dependent diseases. It also plays a vital role in the invasive metastasis of various types of cancer. Moreover, several studies have demonstrated that Hic­5 plays a critical role in transcriptional regulation, as well as in numerous signaling pathways. Therefore, the inhibition of the functions of Hic­5 may prevent the development or halt the progression of several diseases. Its use as a therapeutic target in future investigations may thus aid in the treatment of several diseases, including various types of cancer. The present review article focused on the expression and functions of Hic­5 in different organs, with the aim of highlighting novel possibilities for future research.


Assuntos
Peróxido de Hidrogênio , Integrinas , Adesão Celular/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Hormônios , Peróxido de Hidrogênio/metabolismo , Integrinas/metabolismo , Paxilina/metabolismo , Fosforilação
10.
Int J Mol Med ; 50(1)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35616162

RESUMO

As a major proton­gated cation channel, acid­sensitive ion channels (ASICs) can perceive large extracellular pH changes. ASICs play an important role in the occurrence and development of diseases of various organs and tissues including in the heart, brain, and gastrointestinal tract, as well as in tumor proliferation, invasion, and metastasis in acidosis and regulation of an acidic microenvironment. The permeability of ASICs to sodium and calcium ions is the basis of their physiological and pathological roles in the body. This review summarizes the physiological and pathological mechanisms of ASICs in digestive system diseases, which plays an important role in the early diagnosis, treatment, and prognosis of digestive system diseases related to ASIC expression.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neurônios , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Ácidos , Sistema Digestório/metabolismo , Concentração de Íons de Hidrogênio , Íons/metabolismo , Neurônios/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA