Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 311: 122661, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38875883

RESUMO

Abdominal adhesion, a serious complication of abdominal surgery, often resists mitigation by current drug administration and physical barriers. To address this issue, we developed an injectable, antifouling hydrogel through the free-radical polymerization of methacrylate chondroitin sulfate (CS-GMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) monomers, dubbed the CGM hydrogel. We systematically analyzed its physicochemical properties, including rheological strength, biocompatibility, and antifouling capabilities. A rat abdominal cecum adhesion model was constructed to assess the effectiveness of CGM hydrogel in preventing postoperative adhesion and recurrent adhesion. In addition, multi-omics analyses identified the relationship between adhesion development and CCL2/CCR2 interaction. Notably, CGM hydrogel can thwart the recruitment and aggregation of fibroblasts and macrophages by inhibiting the CCL2/CCR2 interaction. Moreover, CGM hydrogel significantly dampens the activity of fibrosis-linked cytokines (TGF-ßR1) and recalibrates extracellular matrix deposition-related cytokines (t-PA and PAI-1, Col Ⅰ and MMP-9). Cumulatively, the dual action of CGM hydrogel-as a physical barrier and cytokine regulator-highlights its promising potential in clinical application for abdominal adhesion prevention.

2.
Int J Biol Macromol ; 258(Pt 1): 128293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000587

RESUMO

Periodontitis is an oral disease with the highest incidence globally, and plaque control is the key to its treatment. In this study, Microcin C7 was used to treat periodontitis, and a novel injectable temperature-sensitive sustained-release hydrogel was synthesized as an environmentally sensitive carrier for drug delivery. First, modified gelatin was formed from gelatin and glycidyl methacrylate. Then, Microcin C7-laden hydrogel was formed from cross-linking with double bonds between modified gelatin, N-isopropyl acrylamide, and 2-Methacryloyloxyethyl phosphorylcholine through radical polymerization, and the model drug Microcin C7 was loaded by electrostatic adsorption. The hydrogel has good temperature sensitivity, self-healing, and injectable properties. In vitro results showed that the hydrogel could slowly and continuously release Microcin C7 with good biocompatibility and biodegradability, with a remarkable antibacterial effect on Porphyromonas gingivalis. It also confirmed the antibacterial and anti-inflammatory effects of Microcin C7-laden hydrogel in a periodontitis rat model. The results showed that Microcin C7-laden hydrogel is a promising candidate for local drug delivery systems in periodontitis.


Assuntos
Bacteriocinas , Hidrogéis , Periodontite , Ratos , Animais , Hidrogéis/química , Gelatina/química , Antibacterianos/farmacologia , Periodontite/tratamento farmacológico
3.
Int J Biol Macromol ; 248: 125557, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364811

RESUMO

Joint wound dressings are currently significantly limited in their clinical applications due to their inferior mechanical properties and single therapeutic effect. Therefore, it is imperative to develop a versatile joint wound dressing that integrates adequate stretchability, desirable biocompatibility, and multiple biological effects into one system. We implemented the electrospinning technique in this study to fabricate a novel nanofibrous membrane (NFM) composed of gelatin (GEL) and astragalus polysaccharides (APS), termed GEL/APS NFM. The selection of GEL and APS confers excellent biocompatibility to GEL/APS NFM. Furthermore, the optimally proportioned GEL/APS NFM exhibits satisfactory stretchability and desirable wound healing efficiency. Furthermore, released APS can exert anti-inflammatory, procollagen deposition, and proangiogenic effects to accelerate epithelial tissue, enhancing joint wound healing. In summary, GEL/APS NFM offers a convenient and effective approach to promoting rapid joint wound healing, providing a novel approach to joint wound care.


Assuntos
Nanofibras , Cicatrização , Gelatina , Polissacarídeos/farmacologia , Bandagens , Antibacterianos
4.
Biomater Res ; 27(1): 38, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127622

RESUMO

BACKGROUND: Antibacterial activity and on-demand removability are key characteristics governing the effectiveness of clinic wound dressing. However, the excellent tissue adhesion of new dressings is often overemphasized without a detailed discussion of dressing replacement. Besides, the inherent antibacterial ability of dressings is beneficial for promoting the healing of infected wound. Therefore, we rationally design an injectable antibacterial wound dressing with on-demand removability to accelerate infected wound healing. METHOD: We design this wound dressing with a simple and feasible method based on the electrostatic self-assembly of hyaluronic acid and ε-polylysine. We investigated the efficacy of this dressing in terms of its microtopography, rheology, self-healing performance, adhesive ability, antimicrobial, hemostatic, on-demand removal properties, and wound healing promotion through various tests. RESULTS: The prepared dressing possesses injectability, self-healing ability and antibacterial activity, showing NaCl-triggered on-demand dissolution due to the disruption of electrostatic interactions. When used as dressings for healing full-thickness wounds, it could effectively accelerate wound healing by killing bacteria, downregulating inflammation, promoting collagen deposition, enhancing keratinocyte migration and angiogenesis due to its excellent adhesion ability, favorable hemostatic property, and potent antibacterial performance. CONCLUSION: All results indicate that this is a simple and practical dressing for clinical application. This strategy provides a novel idea for developing on-demand removal dressings with antibacterial and injectable properties.

5.
Carbohydr Polym ; 310: 120668, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925265

RESUMO

Bacterial prostatitis is a bacterial infection of the prostate gland presenting with lower quadrant abdominal pain, urination disorders and poor fertility. In recent years, reports have emerged on the significantly reduced efficacy of fluoroquinolone drugs attributed to multiple drug-resistant bacteria, emphasizing the need for new drugs. In this study, we designed a targeting drug delivery system via curcumin copper complex grafted with hyaluronic acid. Subsequently, the prepared system was characterized using FT-IR, XRD, SEM, XPS and 1H NMR methods. In addition to the substantial improvement in the solubility of the carrier, its antibacterial performance and targeting ability were improved. Interestingly, the grafting of hyaluronic acid endowed the carrier with excellent CD44 receptor targeting function and good water solubility, and the complexation of copper ions greatly enhanced its antibacterial capability, especially the inhibitory effect on E. coli. The anti-prostatitis effect of the drug was evaluated comprehensively by establishing a bacterial prostatitis model infected by E. coli. Assessment of the anti-prostatitis effects in vivo indicated that the Cur-Cu@HA delivery system could effectively promote recovery from bacterial prostatitis by downregulating inflammation. In conclusion, our Cur-Cu@HA delivery system has great potential for treating bacterial prostatitis.


Assuntos
Infecções Bacterianas , Curcumina , Nanopartículas , Masculino , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/química , Sistemas de Liberação de Fármacos por Nanopartículas , Ácido Hialurônico/química , Cobre/química , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Nanopartículas/química
6.
Biomater Sci ; 11(2): 618-629, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36484291

RESUMO

Ulcerative colitis (UC) is a chronic nonspecific inflammatory bowel disease often characterized by rapid progression and frequent comorbidities that make its treatment challenging. In colonic ulcers of UC patients, myeloperoxidase (MPO) is highly expressed, which results in an abundance of macrophages and reactive oxygen species. This study developed an active MPO-targeting hyaluronic acid/serotonin ceria nanoenzyme (HA-5-HT@CeO2) using the electrostatic interaction between CeO2 nanoparticles, 5-hydroxyserotonin-cerium oxide and hyaluronic acid. Based on the dual targeting effects of MPO and the macrophage CD44+ receptor in locating the inflammatory site in conjunction with the inflammatory area of the colon through electrostatic action, CeO2 nanoparticles along with multiple similar enzymes were used to eliminate O2, H2O2 and ˙OH and other reactive oxygen species, achieving targeted repair of the intestinal epithelial barrier through the elimination of inflammatory factors. In studies involving pharmacodynamics in vitro and DSS-induced animal models of acute colitis in vivo, HA-5-HT@CeO2 has been shown to reduce inflammation further and treat ulcerative colitis compared to traditional drugs. Additionally, active targeting of MPO inflammation can lead to accurate drug delivery to the site and can minimize the side effects associated with the drug. HA-5-HT@CeO2 is a promising novel drug for the treatment of ulcerative colitis. In addition to illustrating the benefits of this novel nanodrug delivery in treating ulcerative colitis compared to traditional medications, this study provides theoretical and experimental support for its application to any targeted therapy for ulcerative colitis.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Serotonina/efeitos adversos , Ácido Hialurônico/uso terapêutico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/efeitos adversos , Nanomedicina , Inflamação , Modelos Animais de Doenças
7.
Front Chem ; 10: 969962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936086

RESUMO

Ulcerative colitis (UC) is a chronic idiopathic inflammatory bowel disease characterized by rapid progression and frequent comorbidities that make its treatment challenging. Nanomaterial-based strategies have been extensively studied to target the GI mucosal immune system in recent years. Herein, we propose a novel apigenin-Mn(II) loaded sodium hyaluronate nanoparticles where apigenin (API) was incorporated in the Mn2+ ramework, coated with hyaluronic acid. The apigenin-Mn(II) loaded sodium hyaluronate nanoparticles (API-Mn(II)@HA NPs) exhibited a diameter of 200 nm and were effective against UC. The preparation of the API-Mn(II) complex was relatively simple, and the mechanism underlying its therapeutic effect on UC induced by sodium dextran sulfate (DSS) was studied in detail. We found that API-Mn(II)@HA nanoparticles could effectively repair the intestinal barrier and significantly improve the damaged colon tissue by mediating inflammatory factors. This study provides novel insights on a new kind of active targeted nanoparticle for improving the efficacy of drugs for UC treatment.

8.
Bioact Mater ; 16: 27-46, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35386330

RESUMO

Postsurgical adhesion is a common clinic disease induced by surgical trauma, accompanying serious subsequent complications. Current non-surgical approaches of drugs treatment and biomaterial barrier administration only show limited prevention effects and couldn't effectively promote peritoneum repair. Herein, inspired by bottlebrush, a novel self-fused, antifouling, and injectable hydrogel is fabricated by the free-radical polymerization in aqueous solution between the methacrylate hyaluronic acid (HA-GMA) and N-(2-hydroxypropyl) methacrylamide (HPMA) monomer without any chemical crosslinkers, termed as H-HPMA hydrogel. The H-HPMA hydrogel can be tuned to perform excellent self-fused properties and suitable abdominal metabolism time. Intriguingly, the introduction of the ultra-hydrophilic HPMA chains to the H-HPMA hydrogel affords an unprecedented antifouling capability. The HPMA chains establish a dense hydrated layer that rapidly prevents the postsurgical adhesions and recurrent adhesions after adhesiolysis in vivo. The H-HPMA hydrogel can repair the peritoneal wound of the rat model within 5 days. Furthermore, an underlying mechanism study reveals that the H-HPMA hydrogel significantly regulated the mesothelial-to-mesenchymal transition (MMT) process dominated by the TGF-ß-Smad2/3 signal pathway. Thus, we developed a simple, effective, and available approach to rapidly promote peritoneum regeneration and prevent peritoneal adhesion and adhesion recurrence after adhesiolysis, offering novel design ideas for developing biomaterials to prevent peritoneal adhesion.

9.
J Biomed Nanotechnol ; 18(1): 120-131, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35180905

RESUMO

As one of the most challenging inflammatory diseases, the incidence of ulcerative colitis (UC) is increasing year by year, but the existing therapeutic drugs are not effective and lack of targeting. Nanomaterials are expected to become promising delivery system due to their good targeting effects. Here, we designed a nanomaterial sensitive to reactive oxygen species, which can be used to treat IBD, especially UC. It is a self-assembled polyether micelle that can be oxidized at the inflammation site where the concentration of reactive oxygen increases, and effectively release the encapsulated budesonide (Bud). Experiments have proved that for DSS-induced colitis, the synthetic drug-loaded nanoparticles have excellent therapeutic effects, can effectively repair intestinal barrier, and significantly improve the damaged colon tissue. At the same time, it has a beneficial regulatory effect on inflammatory factors. Molecular mechanism studies have shown that it achieves its therapeutic effects by activating the peroxisome proliferators-activated receptors-γ (PPAR-γ) pathway and inhibiting the nuclear factor (NF)-κB pathway. This study proves that oral nano-micelles have an important impact on improving the efficacy of UC treatment drugs and have far-reaching significance for the targeted treatment of gastrointestinal diseases.


Assuntos
Colite Ulcerativa , Nanoestruturas , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Micelas , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA