Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373095

RESUMO

Abiotic stress, such as drought, osmotic, and salinity stresses, seriously affects plant growth and crop production. Studying stress-resistant genes that enhance plant stress tolerance is an efficient way to facilitate the breeding of crop species with high stress tolerance. In this study, we reported that the core circadian clock component, the LATE ELONGATED HYPOCOTYL (LHY) orthologue MtLHY, plays a positive role in salt stress response in Medicago truncatula. The expression of MtLHY was induced by salt stress, and loss-of-function mutants of MtLHY were shown to be hypersensitive to salt treatment. However, overexpression of MtLHY improved salt stress tolerance through a higher accumulation of flavonoids. Consistently, exogenous flavonol application improved the salt stress tolerance in M. truncatula. Additionally, MtLHY was identified as a transcriptional activator of the flavonol synthase gene, MtFLS. Our findings revealed that MtLHY confers plant salt stress tolerance, at least by modulating the flavonoid biosynthesis pathway, which provides insight into salt stress tolerance that links the circadian clock with flavonoid biosynthesis.


Assuntos
Hipocótilo , Medicago truncatula , Hipocótilo/genética , Hipocótilo/metabolismo , Medicago truncatula/metabolismo , Melhoramento Vegetal , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Flavonoides/farmacologia , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 187(1): 218-235, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618141

RESUMO

Plant leaves have evolved into diverse shapes and LATE MERISTEM IDENTITY1 (LMI1) and its putative paralogous genes encode homeodomain leucine zipper transcription factors that are proposed evolutionary hotspots for the regulation of leaf development in plants. However, the LMI1-mediated regulatory mechanism underlying leaf shape formation is largely unknown. MtLMI1a and MtLMI1b are putative orthologs of LMI1 in the model legume barrelclover (Medicago truncatula). Here, we investigated the role of MtLMI1a and MtLMI1b in leaf margin morphogenesis by characterizing loss-of-function mutants. MtLMI1a and MtLMI1b are expressed along leaf margin in a near-complementary pattern, and they redundantly promote development of leaf margin serrations, as revealed by the relatively smooth leaf margin in their double mutants. Moreover, MtLMI1s directly activate expression of SMOOTH LEAF MARGIN1 (SLM1), which encodes an auxin efflux carrier, thereby regulating auxin distribution along the leaf margin. Further analysis indicates that MtLMI1s genetically interact with NO APICAL MERISTEM (MtNAM) and the ARGONAUTE7 (MtAGO7)-mediated trans-acting short interfering RNA3 (TAS3 ta-siRNA) pathway to develop the final leaf margin shape. The participation of MtLMI1s in auxin-dependent leaf margin formation is interesting in the context of functional conservation. Furthermore, the diverse expression patterns of LMI1s and their putative paralogs within key domains are important drivers for functional specialization, despite their functional equivalency among species.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo
4.
Front Plant Sci ; 12: 616776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995430

RESUMO

Formation of nodules on legume roots results from symbiosis with rhizobial bacteria. Here, we identified two GATA transcription factors, MtHAN1 and MtHAN2, in Medicago truncatula, which are the homologs of HANABA TARANU (HAN) and HANABA TARANU LIKE in Arabidopsis thaliana. Our analysis revealed that MtHAN1 and MtHAN2 are expressed in roots and shoots including the root tip and nodule apex. We further show that MtHAN1 and MtHAN2 localize to the nucleus where they interact and that single and double loss-of-function mutants of MtHAN1 and MtHAN2 did not show any obvious phenotype in flower development, suggesting their role is different than their closest Arabidopsis homologues. Investigation of their symbiotic phenotypes revealed that the mthan1 mthan2 double mutant develop twice as many nodules as wild type, revealing a novel biological role for GATA transcription factors. We found that HAN1/2 transcript levels respond to nitrate treatment like their Arabidopsis counterparts. Global gene transcriptional analysis by RNA sequencing revealed different expression genes enriched for several pathways important for nodule development including flavonoid biosynthesis and phytohormones. In addition, further studies suggest that MtHAN1 and MtHAN2 are required for the expression of several nodule-specific cysteine-rich genes, which they may activate directly, and many peptidase and peptidase inhibitor genes. This work expands our knowledge of the functions of MtHANs in plants by revealing an unexpected role in legume nodulation.

5.
Plant Cell Physiol ; 62(2): 321-333, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33386852

RESUMO

The molecular mechanisms underlying the diversity of leaf shapes have been of great interest to researchers. Leaf shape depends on the pattern of serrations and the degree of indentation of leaf margins. Multiple transcription factors and hormone signaling pathways are involved in this process. In this study, we characterized the developmental roles of SMALL AND SERRATED LEAF (SSL) by analyzing a recessive mutant in the model legume Medicago truncatula. An ortholog of Arabidopsis thaliana GA3-oxidase 1 (GA3ox1), MtGA3ox1/SSL, is required for GA biosynthesis. Loss of function in MtGA3ox1 results in the small plant and lateral organs. The prominent phenotype of the mtga3ox1 mutant is a more pronounced leaf margin, indicating the critical role of GA level in leaf margin formation. Moreover, 35S:MtDELLA2ΔDELLA and 35S:MtARF3 transgenic plants display leaves with a deeply wavy margin, which resembles those of mtga3ox1. Further investigations show that MtGA3ox1 is under the control of MtDELLA1/2/3-MtGAF1 complex-dependent feedback regulation. Further, MtARF3 behaves as a competitive inhibitor of MtDELLA2/3-MtGAF1 complexes to repress the expression of MtGA3ox1 indirectly. These findings suggest that GA feedback regulatory circuits play a fundamental role in leaf margin formation, in which the posttranslational interaction between transcription factors functions as an additional feature.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Mutação , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica
6.
J Integr Plant Biol ; 62(12): 1880-1895, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33405366

RESUMO

As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen-fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24-h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.


Assuntos
Ritmo Circadiano , Medicago truncatula/genética , Folhas de Planta/fisiologia , Nodulação , Fatores de Transcrição/fisiologia , Medicago truncatula/metabolismo , Nitrogênio/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Transcriptoma
7.
Plant Cell Physiol ; 60(7): 1581-1594, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31058993

RESUMO

Lateral root (LR) formation and development play a vital role in plant development by permitting the establishment of branched root systems. It is well known that nutrient availability controls LR development. Moreover, LR development is fine-tuned by a myriad of hormonal signals. Many transcription factors (TFs) participate in LR development. Here, we discuss the TFs involved in the nitrate and auxin signaling pathways and how these function in the regulation of LR formation and development in chrysanthemum. AtTCP20 is a plant-specific TF, which can modulate LR development in response to nitrate. The roles of CmTCP20 in LR development were identified by overexpression in chrysanthemum and heterologous expression in Arabidopsis. Overexpression of CmTCP20 significantly increased the number and average length of LRs compared with the wild type in chrysanthemum and Arabidopsis. We also found that CmTCP20 positively influenced auxin accumulation in the LRs at least partly by improving auxin biosynthesis, transport and response, thereby promoting LR development. Moreover, we found that CmTCP20 interacts with an auxin response factor, CmARF8, which also can be induced by nitrate and combined to proximal sites in the upstream promoter region of CmCYCB1;1 to positively regulate the cell cycle. The CmTCP20-CmARF8 heterodimer links nitrate and auxin signaling and converts cell-cycle signals to regulate LR initiation and growth.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
Plant Sci ; 266: 27-36, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29241564

RESUMO

Root system architecture is an important agronomic trait by which plants both acquire water and nutrients from the soil and adapt to survive in a complex environment. The adaptation of plant root systems to environmental constraints largely depends on the growth and development of lateral roots (LRs). MADS-box transcription factors (TFs) are important known regulators of plant growth, development, and response to environmental stimuli. However, the potential mechanisms by which they regulate LRs development remain poorly understood. Here, we identified a MADS-box chrysanthemum gene CmANR1, homologous to the Arabidopsis gene AtANR1, which plays a key role in the regulation of LR development. qRT-PCR assays indicated that CmANR1 was primarily expressed in chrysanthemum roots and was rapidly induced by exposure to high nitrate concentrations. Ectopic expression of CmANR1 in Arabidopsis significantly increased the number and length of emerged LRs compared to the wild-type (col) control, but had no obvious affect on primary root (PR) development. We also found that CmANR1 positively influenced auxin accumulation in LRs at least partly by improving auxin biosynthesis and transport, thereby promoting LR development. Furthermore, we found that ANR1 formed homo- and heterodimers through interactions with itself and AGL21 at its C-terminal domain. Overall, our findings provide considerable new information about the mechanisms by which the chrysanthemum MADS-box TF CmANR1 mediates LR development by directly altering auxin accumulation.


Assuntos
Arabidopsis/genética , Chrysanthemum/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/química , Arabidopsis/metabolismo , Chrysanthemum/química , Chrysanthemum/metabolismo , Expressão Ectópica do Gene , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA