Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 380-386, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38500435

RESUMO

Objective: To review the research progress of magnesium and magnesium alloy implants in the repair and reconstruction of sports injury. Methods: Relevant literature of magnesium and magnesium alloys for sports injury repair and reconstruction was extensively reviewed. The characteristics of magnesium and its alloys and their applications in the repair and reconstruction of sports injuries across various anatomical sites were thoroughly discussed and summarized. Results: Magnesium and magnesium alloys have advantages in mechanical properties, biosafety, and promoting tendon-bone interface healing. Many preclinical studies on magnesium and magnesium alloy implants for repairing and reconstructing sports injuries have yielded promising results. However, successful clinical translation still requires addressing issues related to mechanical strength and degradation behavior, where alloying and surface treatments offer feasible solutions. Conclusion: The clinical translation of magnesium and magnesium alloy implants for repairing and reconstructing sports injuries holds promise. Subsequent efforts should focus on optimizing the mechanical strength and degradation behavior of magnesium and magnesium alloy implants. Conducting larger-scale biocompatibility testing and developing novel magnesium-containing implants represent new directions for future research.


Assuntos
Traumatismos em Atletas , Medicina Esportiva , Humanos , Magnésio , Ligas , Próteses e Implantes , Teste de Materiais , Implantes Absorvíveis , Corrosão
2.
Adv Healthc Mater ; 13(9): e2303255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253413

RESUMO

Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.


Assuntos
Anilidas , Condrogênese , Hidrogéis , Ácidos Ftálicos , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Preparações de Ação Retardada/farmacologia , Cartilagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA