Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 241: 114058, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936031

RESUMO

Infected skin wound has gradually become a prevalent injury that affects overall health. Currently, biomaterials with good adhesion, efficient antibacterial properties, and angiogenesis are considered as a suitable way to effectively heal infected wound. Herein, a multifunctional hydrogel comprising gelatin, dopamine (DA), and ferric ions (Fe3+) was developed for infected wound healing. The modified gelatin-dopamine (Gel-DA) enhanced adhesive capability. Subsequently introducing ferric ions (Fe3+) to form Gel-DA-Fe3+ hydrogels by Fe3+ and catechol coordination bonds. The designed hydrogels demonstrated multifaceted functionality, encompassing photothermal antibacterial, angiogenesis, and so on. The introduction of DA enhanced the adhesion of Gel-DA-Fe3+ to the skin surface and might serve as a physical barrier to seal wound. Meanwhile, DA and Fe3+ jointly endowed good photothermal effects to composite hydrogels, which could eliminate over 95 % of bacteria. In vitro results revealed that Gel-DA-Fe3+ hydrogels had good biocompatibility and promoted HUVECs migration and tube formation. Furthermore, in vivo studies confirmed that Gel-DA-Fe3+ hydrogels markedly expedited the wound healing of rats through eradicating bacteria, accelerating the deposition of collagen, and promoting angiogenesis. What's more, Gel-DA-Fe3+ hydrogels under near-infrared laser had a more pronounced ability for wound healing. Therefore, Gel-DA-Fe3+ hydrogels had great potential for application in bacteria-infected wound healing.


Assuntos
Antibacterianos , Dopamina , Gelatina , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Cicatrização , Dopamina/química , Dopamina/farmacologia , Cicatrização/efeitos dos fármacos , Gelatina/química , Gelatina/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Ratos , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos , Tamanho da Partícula , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
2.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446885

RESUMO

Some food-derived bioactive peptides exhibit prominent immunoregulatory activity. We previously demonstrated that the rice-derived PEP1 peptide, GIAASPFLQSAAFQLR, has strong immunological activity. However, the mechanism of this action is still unclear. In the present study, full-length transcripts of mouse dendritic cells (DC2.4) treated with PEP1 were sequenced using the PacBio sequencing platform, and the transcriptomes were compared via RNA sequencing (RNA-Seq). The characteristic markers of mature DCs, the cluster of differentiation CD86, and the major histocompatibility complex (MHC-II), were significantly upregulated after the PEP1 treatment. The molecular docking suggested that hydrogen bonding and electrostatic interactions played important roles in the binding between PEP1, MHC-II, and the T-cell receptor (TCR). In addition, the PEP1 peptide increased the release of anti-inflammatory factors (interleukin-4 and interleukin-10) and decreased the release of pro-inflammatory factors (interleukin-6 and tumor necrosis factor-α). Furthermore, the RNA-seq results showed the expression of genes involved in several signaling pathways, such as the NF-κB, MAPK, JAK-STAT, and TGF-ß pathways, were regulated by the PEP1 treatment, and the changes confirmed the immunomodulatory effect of PEP1 on DC2.4 cells. This findings revealed that the PEP1 peptide, derived from the byproduct of rice processing, is a potential natural immunoregulatory alternative for the treatment of inflammation.


Assuntos
Oryza , Animais , Camundongos , Oryza/genética , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/metabolismo , Perfilação da Expressão Gênica , Células Dendríticas
3.
Acta Pharm Sin B ; 13(5): 2017-2038, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250149

RESUMO

Neurogenesis decline in hippocampal dentate gyrus (DG) participates in stress-induced depressive-like behaviors, but the underlying mechanism remains poorly understood. Here, we observed low-expression of NOD-like receptor family pyrin domain containing 6 (NLRP6) in hippocampus of stress-stimulated mice, being consistent with high corticosterone level. NLRP6 was found to be abundantly expressed in neural stem cells (NSCs) of DG. Both Nlrp6 knockout (Nlrp6-/-) and NSC-conditional Nlrp6 knockout (Nlrp6CKO) mice were susceptible to stress, being more likely to develop depressive-like behaviors. Interestingly, NLRP6 was required for NSC proliferation in sustaining hippocampal neurogenesis and reinforcing stress resilience during growing up. Nlrp6 deficiency promoted esophageal cancer-related gene 4 (ECRG4) expression and caused mitochondrial dysfunction. Corticosterone as a stress factor significantly down-regulated NLRP6 expression, damaged mitochondrial function and suppressed cell proliferation in NSCs, which were blocked by Nlrp6 overexpression. ECRG4 knockdown reversed corticosterone-induced NSC mitochondrial function and cell proliferation disorders. Pioglitazone, a well-known clinical drug, up-regulated NLRP6 expression to inhibit ECRG4 expression in its protection against corticosterone-induced NSC mitochondrial dysfunction and proliferation restriction. In conclusion, this study demonstrates that NLRP6 is essential to maintain mitochondrial homeostasis and proliferation in NSCs, and identifies NLRP6 as a promising therapeutic target for hippocampal neurogenesis decline linked to depression.

5.
Bioanalysis ; 14(23): 1497-1508, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36825935

RESUMO

Aim: Caffeine is a central nervous system stimulant, used to treat apnea of prematurity. A hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) approach was developed to detect caffeine, paraxanthine, theophylline and theobromine in premature infants. Method: Protein precipitation of plasma samples (10 µl) was carried out by treating with acetonitrile containing caffeine-13C3. The separation was carried out on an ACQUITY HPLC® BEH HILIC column. Caffeine and its metabolites were quantified by multiple reaction monitoring modes with positive electrospray ionization. Results: The established method had a good linear relationship in the range of 0.0600-60.0 µg/ml for caffeine, 0.0250-7.50 µg/ml for theobromine and 0.0150-4.50 µg/ml for paraxanthine and theophylline. Conclusion: A HILIC-MS/MS method was developed and validated to determine caffeine and its major metabolites in plasma of premature infants.


Assuntos
Cafeína , Teofilina , Humanos , Recém-Nascido , Cafeína/análise , Cafeína/metabolismo , Teofilina/análise , Teobromina , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Recém-Nascido Prematuro
6.
J Neurochem ; 157(6): 1979-1991, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33205422

RESUMO

Our previous studies showed that high fructose diet (HFrD)-driven gut dysbiosis caused fecal short-chain fatty acids (SCFAs) reduction and intestinal epithelial barrier (IEB) damage in mice, which might play an important role in hippocampal neuroinflammatory injury. Mulberroside A is reported to have neuroprotective effects in animal experiments, while the underlying mechanisms are not yet fully elucidated. Here, we investigated whether and how mulberroside A prevented HFrD-induced neuroinflammatory injury. HFrD-fed mice were treated orally with mulberroside A (20 and 40 mg/kg) for 8 weeks. Mulberroside A was found to inhibit hippocampal neuroinflammation and neurogenesis reduction in HFrD-fed mice. It reshaped gut dysbiosis, increased fecal and serum SCFAs contents, reactivated signaling of the colonic NLR family, pyrin domain containing 6 (NLRP6) inflammasome, and up-regulated Muc2 expression to prevent IEB damage, as well as subsequently, reduced serum endotoxin levels in this animal model. Additionally, mulberroside A inhibited oxidative stress in colon of HFrD-fed mice and hydrogen peroxide (H2 O2 )-stimulated Caco-2 cells. Blood-brain barrier (BBB) structure defects were also observed in HFrD-driven hippocampal neuroinflammatory injury of mice. Interestingly, mulberroside A maintained astrocyte morphology and up-regulated tight junction proteins to repair BBB structure defects in hippocampus dentate gyrus (DG). Our results demonstrated that mulberroside A was capable of preventing HFrD-induced damage of IEB and BBB in mice, which might contribute to the suppression of hippocampal neuroinflammatory injury.


Assuntos
Barreira Hematoencefálica/metabolismo , Açúcares da Dieta/toxicidade , Dissacarídeos/farmacologia , Frutose/toxicidade , Hipocampo/metabolismo , Mucosa Intestinal/metabolismo , Estilbenos/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Células CACO-2 , Células Cultivadas , Açúcares da Dieta/administração & dosagem , Frutose/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Epigenetics Chromatin ; 12(1): 66, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711526

RESUMO

BACKGROUND: Numerous cell types can be identified within plant tissues and animal organs, and the epigenetic modifications underlying such enormous cellular heterogeneity are just beginning to be understood. It remains a challenge to infer cellular composition using DNA methylomes generated for mixed cell populations. Here, we propose a semi-reference-free procedure to perform virtual methylome dissection using the nonnegative matrix factorization (NMF) algorithm. RESULTS: In the pipeline that we implemented to predict cell-subtype percentages, putative cell-type-specific methylated (pCSM) loci were first determined according to their DNA methylation patterns in bulk methylomes and clustered into groups based on their correlations in methylation profiles. A representative set of pCSM loci was then chosen to decompose target methylomes into multiple latent DNA methylation components (LMCs). To test the performance of this pipeline, we made use of single-cell brain methylomes to create synthetic methylomes of known cell composition. Compared with highly variable CpG sites, pCSM loci achieved a higher prediction accuracy in the virtual methylome dissection of synthetic methylomes. In addition, pCSM loci were shown to be good predictors of the cell type of the sorted brain cells. The software package developed in this study is available in the GitHub repository (https://github.com/Gavin-Yinld). CONCLUSIONS: We anticipate that the pipeline implemented in this study will be an innovative and valuable tool for the decoding of cellular heterogeneity.


Assuntos
Metilação de DNA , Análise de Célula Única/métodos , Algoritmos , Animais , Encéfalo/metabolismo , Ilhas de CpG , Loci Gênicos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Análise de Componente Principal , Interface Usuário-Computador
8.
Microbiome ; 7(1): 98, 2019 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-31255176

RESUMO

BACKGROUND: Western-style diets arouse neuroinflammation and impair emotional and cognitive behavior in humans and animals. Our previous study showed that a high-fructose diet caused the hippocampal neuroinflammatory response and neuronal loss in animals, but the underlying mechanisms remained elusive. Here, alterations in the gut microbiota and intestinal epithelial barrier were investigated as the causes of hippocampal neuroinflammation induced by high-fructose diet. RESULTS: A high-fructose diet caused the hippocampal neuroinflammatory response, reactive gliosis, and neuronal loss in C57BL/6N mice. Depletion of the gut microbiota using broad-spectrum antibiotics suppressed the hippocampal neuroinflammatory response in fructose-fed mice, but these animals still exhibited neuronal loss. Gut microbiota compositional alteration, short-chain fatty acids (SCFAs) reduction, intestinal epithelial barrier impairment, NOD-like receptor family pyrin domain-containing 6 (NLRP6) inflammasome dysfunction, high levels of serum endotoxin, and FITC-dextran were observed in fructose-fed mice. Of note, SCFAs, as well as pioglitazone (a selective peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist), shaped the gut microbiota and ameliorated intestinal epithelial barrier impairment and NLRP6 inflammasome dysfunction in fructose-fed mice. Moreover, SCFAs-mediated NLRP6 inflammasome activation was inhibited by histamine (a bacterial metabolite) in ex vivo colonic explants and suppressed in murine CT26 colon carcinoma cells transfected with NLRP6 siRNA. However, pioglitazone and GW9662 (a PPAR-γ antagonist) exerted no impact on SCFAs-mediated NLRP6 inflammasome activation in ex vivo colonic explants, suggesting that SCFAs may stimulate NLRP6 inflammasome independently of PPAR-γ activation. SCFAs and pioglitazone prevented fructose-induced hippocampal neuroinflammatory response and neuronal loss in mice. Additionally, SCFAs activated colonic NLRP6 inflammasome and increased DCX+ newborn neurons in the hippocampal DG of control mice. CONCLUSIONS: Our findings reveal that gut dysbiosis is a critical factor for a high-fructose diet-induced hippocampal neuroinflammation in C57BL/6N mice possibly mediated by impairing intestinal epithelial barrier. Mechanistically, the defective colonic NLRP6 inflammasome is responsible for intestinal epithelial barrier impairment. SCFAs can stimulate NLRP6 inflammasome and ameliorate the impairment of intestinal epithelial barrier, resulting in the protection against a high-fructose diet-induced hippocampal neuroinflammation and neuronal loss. This study addresses a gap in the understanding of neuronal injury associated with Western-style diets. A new intervention strategy for reducing the risk of neurodegenerative diseases through SCFAs supplementation or dietary fiber consumption is emphasized.


Assuntos
Disbiose/induzido quimicamente , Ácidos Graxos Voláteis/administração & dosagem , Frutose/efeitos adversos , Hipocampo/efeitos dos fármacos , Inflamação/induzido quimicamente , Animais , Proteína Duplacortina , Microbioma Gastrointestinal , Hipocampo/patologia , Inflamassomos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimunomodulação/efeitos dos fármacos , Pioglitazona/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA