Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 184: 105076, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715031

RESUMO

Chemosensory proteins (CSPs) are a class of small transporter proteins expressed only in arthropods with various functions beyond chemoreception. Previous studies have been reported that CSPs are involved in the insecticide resistance. In this study, we found that AgoCSP1, AgoCSP4, and AgoCSP5 were constitutively overexpressed in an insecticide-resistant strain of Aphis gossypii and showed higher expression in broad body tissue (including fat bodies) than in the midgut but without tissue specificity. However, the function of these three upregulated AgoCSPs remains unknown. Here, we investigated the function of AgoCSPs in resistance to the diamide insecticide cyantraniliprole. Suppression of AgoCSP1, AgoCSP4 and AgoCSP5 transcription by RNAi significantly increased the sensitivity of resistant aphids to cyantraniliprole. Molecular docking and competitive binding assays indicated that these AgoCSPs bind moderate with cyantraniliprole. Transgenic Drosophila melanogaster expressing these AgoCSPs in the broad body or midgut showed higher tolerance to cyantraniliprole than control flies with the same genetic background; AgoCSP4 was more effective in broad body tissue, and AgoCSP1 and AgoCSP5 were more effective in the midgut, indicating that broad body and midgut tissues may be involved in the insecticide resistance mediated by the AgoCSPs examined. The present results strongly indicate that AgoCSPs participate in xenobiotic detoxification by sequestering and masking toxic insecticide molecules, providing insights into new factors involved in resistance development in A. gossypii.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Diamida , Drosophila melanogaster , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Pirazóis , ortoaminobenzoatos
2.
Pestic Biochem Physiol ; 184: 105104, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715043

RESUMO

Cyantraniliprole, a second-generation anthranilic diamide insecticide, is widely used to control chewing and sucking pests. ATP-binding cassette transporters (ABCs) are a ubiquitous family of membrane proteins that play important roles in insect detoxification mechanisms. However, the potential effects of ABCs on cyantraniliprole-resistance remain unclear. In the present study, synergism bioassays revealed that verapamil, an ABC inhibitor, increased the toxicity of cyantraniliprole by 2.00- and 12.25-fold in the susceptible and cyantraniliprole-resistant strains of Aphis gossypii. Based on transcriptome data, the expression levels of ABCB4, ABCB5, ABCD1, ABCG4, ABCG7, ABCG13, ABCG16, ABCG17, ABCG26 and MRP12 were upregulated 1.56-, 1.32-, 1.51-, 2.03-, 1.65-, 1.50-, 4.18-, 6.07-, 4.68- and 4.69-fold, respectively, in the cyantraniliprole-resistant strain (CyR) compared to the susceptible strain (SS), as determined using RT-qPCR. Drosophila melanogaster ectopically overexpressing ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 exhibited significantly increased tolerance to cyantraniliprole by 11.71-, 2.39-, 4.85-, 2.06-, 3.75-, 4.20- and 3.50-fold, respectively, with ABCB5 and ABCG family members being the most effective. Furthermore, the suppression of ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 significantly increased the sensitivity of the CyR strain to cyantraniliprole. These results indicate that ABCs may play crucial roles in cyantraniliprole resistance and may provide information for shaping resistance management strategies.


Assuntos
Afídeos , Inseticidas , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Drosophila melanogaster/metabolismo , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Pirazóis , ortoaminobenzoatos/farmacologia
3.
Pestic Biochem Physiol ; 167: 104558, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32527432

RESUMO

ATP-binding cassette (ABC) transporters represent the largest known group of efflux pumps, utilizing ATP to translocate a broad spectrum of substrates across lipid membranes, which play an important role in phase III of the detoxification process. The presence of ABC transporters and their potential association with insecticide resistance have not been investigated in Aphis gossypii, one of the most economically important agricultural pests worldwide. In this study, the ABC transporter inhibitor-verapamil significantly increased thiamethoxam toxicity against resistant cotton aphids, suggesting that ABCs are involved in thiamethoxam resistance. ABC transporter genes were identified using the A. gossypii genome database and transcriptome data. A total of 69 ABC transporters were identified and grouped into seven subfamilies (A-G), including 4 ABCAs, 5 ABCBs, 25 ABCCs, 2 ABCDs, 1 ABCE, 4 ABCFs and 30 ABCGs. Of these ABC transporters, 53 were predicted to be functional, 19 were full transporters, 30 were half-transporters and 4 had two NBDs. Subfamilies C and G accounted for 77% (32 and 45%, respectively) of the genes. The transcripts of 20 of 26 ABCs based on the transcriptome were upregulated, and ABCA1, ABCA2, ABCB1, ABCB4, ABCB8, ABCD1, ABCD2, ABCE1, ABCF1, ABCF3, ABCG7, ABCG15, ABCG17, ABCG24, ABCG27, ABCG30, MRP1, MRP7, MRP14 and MRP21 transcripts were significantly increased in the thiamethoxan resistant strain compared to the susceptible strain with qRT-PCR. The suppression of overexpressed ABCs (ABCA2, ABCD1, ABCD2, ABCE1 and ABCG15) significantly increased the thiamethoxam sensitivity of resistant aphids. These results suggest that ABC transporters might be involved in thiamethoxam resistance in A. gossypii and will facilitate further work to validate the functional roles of these ABCs in thiamethoxam resistance. These results are useful for understanding the multiple resistance mechanisms of thiamethoxam and the management of insecticide-resistant cotton aphids.


Assuntos
Afídeos , Inseticidas , Transportadores de Cassetes de Ligação de ATP , Animais , Resistência a Inseticidas , Tiametoxam
4.
Pestic Biochem Physiol ; 166: 104565, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448419

RESUMO

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic endogenous and exogenous compounds with sugars to produce water-soluble glycosides, playing an important role in insect endobiotic regulation and xenobiotic detoxification. In this study, two UGT-inhibitors, sulfinpyrazone and 5-nitrouracil, significantly increased spirotetramat toxicity against third instar nymphs of resistant Aphis gossypii, whereas there were no synergistic effects in apterous adult aphids, suggesting UGT involvement in spirotetramat resistance in cotton aphids. Furthermore, the UHPLC-MS/MS was employed to determine the content of spirotetramat and its four metabolites (S-enol, S-glu, S-mono, S-keto) in the honeydew of resistant cotton aphids under spirotetramat treatment. No residual spirotetramat was detected in the honeydew, while its four metabolites were detected at a S-enol: S-glu: S-mono: S-keto ratio of 69.30: 6.54: 1.44: 1.00. Therefore, glycoxidation plays a major role in spirotetramat inactivation and excretion in resistant aphids. Compared with the susceptible strain, the transcriptional levels of UGT344M2 were significantly upregulated in nymphs and adults of the resistant strain. RNA interference of UGT344M2 dramatically increased spirotetramat toxicity in nymphs, but no such effect were found in the resistant adult aphids. Overall, UGT-mediated glycoxidation were found to be involved in spirotetramat resistance. The suppression of UGT344M2 significantly increased the sensitivity of resistant nymphs to spirotetramat, suggesting that UGT344M2 upregulation might be associated with spirotetramat detoxification. This study provides an overview of the involvement of metabolic factors, UGTs, in the development of spirotetramat resistance.


Assuntos
Afídeos , Inseticidas , Animais , Compostos Aza , Glicosiltransferases , Resistência a Inseticidas , Compostos de Espiro , Espectrometria de Massas em Tandem , Difosfato de Uridina
5.
Insects ; 11(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252427

RESUMO

Nuclear factor erythroid 2 related factor 2 (Nrf2) belongs to the cap 'n' collar basic region leucine zipper (CNC-bZIP) transcription factor family, and is activated by diverse oxidants, pro-oxidants, antioxidants, and chemo-preventive agents. Transcriptional regulation of a battery of detoxifying and antioxidant genes by Nrf2 has been shown to be important for protection against oxidative stress or chemically-induced cellular damages. In our research, we cloned the full length CncC gene from the Spodoptera frugiperda, named as SfCncC. The cDNA of the SfCncC consists of 2652 nucleotides that include a 2196-nucleotide open reading frame (ORF), encoding 731 amino acid residues, and 239- and 217-bp non-coding regions flanking at the 5'- and 3'-ends of the cDNA, respectively. Sequence analysis indicated SfCncC has the conserved domain (CNC-bZIP domain and a tetrapeptide motif, ETGE) character of Nrf2 and showed high identity compared with the CncC/Nrf2 from other insect and vertebrate species. Over-expression of SfCncC can up-regulate the transcription and activity of the SOD gene in Sf9 cells, and the RNAi of SfCncC in Sf9 cells and larvae of S. frugiperda can dramatically reduce the transcriptional level and activity of the SOD gene, as determined by real-time quantitative PCRs. So the SfCncC is involved in the Keap1-Nrf2-ARE pathway, acting the same as the transcriptional factor Nrf2 in vertebrate, and plays a role for host cell defense. The functional characterization of SfCncC provides the fundamental basis for us to further understand the regulatory mechanism of anti-oxidants and anti-xenobiotics in S. frugiperda.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA