Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38716855

RESUMO

Fe, Cr, and W are important elements in the alloys of in-reactor materials and operate in high-temperature environments with thermal expansion. Their tritium-impeding abilities are crucial to the radiation safety of various nuclear reactors. In this study, first-principles density functional theory is combined with quasi-harmonic approximation to evaluate factors that can affect the interstitial formation energy and diffusion coefficient of hydrogen isotopes in body-centered cubic (BCC) Fe, Cr, and W, including thermal expansion, metal host lattice vibrations, phonon density-of-states (pDOS) coupling diffusing atoms, and isotope effects. Calculation results indicate that the interstitial formation energy decreases as lattice expansion increases, whereas the jump barriers remain almost constant. Thermal expansion, host lattice vibration, and pDOS coupling minimally affect the diffusion coefficients of hydrogen isotopes in Fe, Cr, and W. The diffusion coefficient ratios between hydrogen isotopes are higher than the inverse ratio of the square root of the isotope mass at low temperatures. However, they decrease to the inverse ratio of the square root of the isotope mass at temperatures exceeding 800 K. This study comprehensively investigates factors that affect the diffusion coefficients of hydrogen isotopes in BCC Fe, Cr, and W, thus providing a firm theoretical foundation for predicting the diffusion coefficients of tritium at different temperatures using protium/deuterium diffusion coefficients.

2.
Nano Lett ; 24(17): 5379-5386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649277

RESUMO

Liquid confined in a nanochannel or nanotube has exhibited a superfast transport phenomenon, providing an ideal heat and mass transfer platform to meet the increasingly stringent challenge of thermal management in developing high-power-density nanoelectronics and nanochips. However, understanding the thermal transport of confined liquid is currently lacking and is speculated to be fundamentally different from that of bulk counterparts due to the unprecedented thermodynamics of liquid in nanoconfined environments. Here, we report that the thermal conductivity of water confined in a silica nanotube is nearly 2-fold as that of bulk status. Further molecular dynamics simulations reveal that this unusual enhancement originates from the densification and reorientation of local hydrogen bonds close to the nanotubes. Thermal-confinement scaling law is established and quantitatively supported by comprehensive simulations with remarkable agreement. Our findings lay a theoretical foundation for designing nanofluidics-enabled cooling strategies and devices.

3.
Nat Commun ; 14(1): 4493, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495604

RESUMO

Atomic-scale precision alignment is a bottleneck in the fabrication of next-generation nanoelectronics. In this study, a redox-coupled inherently selective atomic layer deposition (ALD) is introduced to tackle this challenge. The 'reduction-adsorption-oxidation' ALD cycles are designed by adding an in-situ reduction step, effectively inhibiting nucleation on copper. As a result, tantalum oxide exhibits selective deposition on various oxides, with no observable growth on Cu. Furthermore, the self-aligned TaOx is successfully deposited on Cu/SiO2 nanopatterns, avoiding excessive mushroom growth at the edges or the emergence of undesired nucleation defects within the Cu region. The film thickness on SiO2 exceeds 5 nm with a selectivity of 100%, marking it as one of the highest reported to date. This method offers a streamlined and highly precise self-aligned manufacturing technique, which is advantageous for the future downscaling of integrated circuits.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678087

RESUMO

Aramid nanofibers (ANFs) were successfully produced by deprotonation of Kevlar fiber followed by grafting epichlorohydrin in dimethyl sulfoxide solution. The ANFs were then incorporated into carboxylated acrylonitrile butadiene rubber (XNBR) by means of latex blending, followed by vulcanization. The interaction between ANFs and XNBR, and the effects of ANFs on the mechanical strength, dielectric properties, and thermal stability of ANF/XNBR nanocomposites were investigated. The results revealed that hydrogen bonding and covalent bonding interactions existed between ANFs and the XNBR matrix and played a critical role in the reinforcement of ANFs to XNBR nanocomposites. After adding 5 phr (parts per hundred rubber) of ANFs, the XNBR nanocomposite exhibited a significant improvement in mechanical properties, namely a 182% increase in tensile strength and a 101% increase in tear strength. In addition, the dielectric constant and thermal properties of ANF/XNBR also increased dramatically. ANFs may thus make an ideal candidate for high-performance rubber materials.

5.
ACS Appl Mater Interfaces ; 15(1): 736-750, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538412

RESUMO

Based on first-principles calculations and microkinetic analysis, the reaction routes and origin of the activity of SmMn2O5 mullite for the selective catalytic oxidation of ammonia (NH3-SCO) are systematically investigated on three low-index surfaces under experimentally operating conditions. Key influencing factors and contributions of different iconic intermediate species (NH*, N2H4*, and HNO*) to the overall reaction process have been identified. In detail, Mn4+ serves as the primary active site for NH3 adsorption, while lattice oxygen participates in the dehydrogenation of NH3 on (010)4+ and (001)4+ surfaces. Furthermore, the (010)4+ surface shows both the best activity and the highest N2 selectivity at low temperatures via the synergy effect of exposed Mn-Mn dimers and the most labile O2 atoms. We further evaluate the potential catalytic performances of six A-site doped (010)4+ facets, among which La, Pr, and Nd dopings are predicted to possess better catalytic performances. Our study provides deep insights into the microscope reaction mechanisms and provides the specific optimization strategy for NH3-SCO on mullite oxides.

6.
Nanotechnology ; 34(2)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36215973

RESUMO

Electron transport layers (ETLs) are important components of high-performance all-inorganic perovskite nanocrystals light-emitting diodes (PNCs-LED). Herein, atomic layer deposition (ALD) of inorganic ZnO layer is combined to the organic 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) to form dual ETLs to enhance both the efficiency and stability of PNCs-LED simultaneously. Optimization of ZnO thickness suggested that 10 cycles ALD yields the best performance of the devices. The external quantum efficiency of the device reaches to 7.21% with a low turn-on voltage (2.4 V). Impressively, the dual ETL PNCs-LED realizes maximumT50lifetime of 761 h at the initial luminance of 100 nit, which is one of the top lifetimes among PNCs-LEDs up to now. The improved performance of dual ETL PNCs-LED is mainly due to the improved charge transport balance with favorable energy level matching. These findings present a promising strategy to modify the function layer via ALD to achieve both highly efficient and stable PNCs-LED.

7.
ACS Appl Mater Interfaces ; 14(24): 27762-27774, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674013

RESUMO

Atomic Pt studded on cobalt oxide is a promising catalyst for CO preferential oxidation (PROX) dependent on its surface treatment. In this work, the CO PROX reaction mechanism on Co3O4 supported single Pt atom is investigated by a comprehensive first-principles based microkinetic analysis. It is found that as synthesized Pt1/Co3O4 interface is poisoned by CO in a wide low temperature window, leading to its low reactivity. The CO poisoning effect can be effectively mitigated by a H2 prereduction treatment, that exposes Co ∼ Co dimer sites for a noncompetitive Langmuir-Hinshelhood mechanism. In addition, surface H atoms assist O2 dissociation via "twisting" mechanism, avoiding the high barriers associated with direct O2 dissociation path. Microkinetic analysis reveals that the promotion of H-assisted pathway on H2 treated sample helps improve the activity and selectivity at low temperatures.

8.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065464

RESUMO

Manganese oxide (MnOx) shows great potential in the areas of nano-electronics, magnetic devices and so on. Since the characteristics of precise thickness control at the atomic level and self-align lateral patterning, area-selective deposition (ASD) of the MnOx films can be used in some key steps of nanomanufacturing. In this work, MnOx films are deposited on Pt, Cu and SiO2 substrates using Mn(EtCp)2 and H2O over a temperature range of 80-215 °C. Inherently area-selective atomic layer deposition (ALD) of MnOx is successfully achieved on metal/SiO2 patterns. The selectivity improves with increasing deposition temperature within the ALD window. Moreover, it is demonstrated that with the decrease of electronegativity differences between M (M = Si, Cu and Pt) and O, the chemisorption energy barrier decreases, which affects the initial nucleation rate. The inherent ASD aroused by the electronegativity differences shows a possible method for further development and prediction of ASD processes.

9.
Phys Chem Chem Phys ; 23(14): 8541-8548, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876016

RESUMO

CO oxidation on NiOx-modified Pt nanoparticles (NPs) was investigated by first-principles calculations and microkinetic methods. The binding energies of O2 and CO on NiOx/Pt suggest that CO adsorption is dominant and the CO oxidation mainly follows the Mars-van Krevelen (M-vK) mechanism. It was found that the interfacial O of NiOx/Pt played a key role in the combination of adsorbed CO to O, as well as the O2 dissociation. With a lower O vacancy formation energy, NiOx/Ptedge shows about four orders higher reaction rates than NiOx/Pt(100). Microkinetic analysis suggests that the rate-determining step also depends on the active O at the interface. The calculations highlight the synergetic effect difference of NiOx selectively deposited on the different sites of Pt NPs on the CO oxidation from the atomic reaction mechanism, and throws light on the high activity of CO oxidation on partially covered NiOx/Ptedge nanoparticles.

10.
Nat Commun ; 11(1): 5879, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184272

RESUMO

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-19663-3 .

11.
Artigo em Chinês | MEDLINE | ID: mdl-33254325

RESUMO

Objective:Comparative analysis of the reduction effect of the evoked nystagmus in the non-affect side during Dix-Hallpike(D-H) or Roll-test in unilateral posterior semicircular canal benign paroxysmal positional vertigo(PC-BPPV) and PC-BPPV without above evoked nystagmus. Method:Retrospective analysis of 210 patients diagnosed with unilateral PC-BPPV by G-Force BPPV CRP system was made. Among them, 18 patients exhibited positive nystagmus only when the non-affected side was stimulated by D-H test(Group A), 30 was evoked only when stimulated by Roll-test(Group B), 26 was evoked when stimulated by both Roll-test and the non-affected side D-H test(Group C), 136 without nystagmus in the above positions(Group D). All the patients were diagnosed by G-Force BPPV and were treated through simulative Epley or Semont CRP. Compare the reduction effect among the groups. Result:At the first time ,the reduction effect of nystagmus in Group D was superior to those in Group A and Group C(P<0.05). There was no difference between Group D and Group B(P>0.05). The difference between Group A and Group C was also non-significant(P>0.05). The average CRP times of the four groups(CRP until nystagmus disappeared or no longer alleviated) were 1.44±0.63(Group A), 1.46±0.65(Group B), 1.52±0.87(Group C) and 1.48±0.73(Group D)respectively. There were no statistic difference between four groups(P>0.05). The differences of final reduction effect between groups were the same as those at the first time. Conclusion:The first time reduction effect was less effective when nystagmus evoked the non-affect side during D-H test in unilateral PC-BPPV, while it might be irrelevant to the nystagmus evoked only in Roll-test. Although the times of CRP were similar among the groups, the final reduction effect of groups with nystagmus evoked the non-affect side during D-H was poorer.


Assuntos
Nistagmo Patológico , Procedimentos de Cirurgia Plástica , Vertigem Posicional Paroxística Benigna , Humanos , Estudos Retrospectivos , Canais Semicirculares
12.
Nat Commun ; 11(1): 4240, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843647

RESUMO

Improving the low-temperature activity (below 100 °C) and noble-metal efficiency of automotive exhaust catalysts has been a continuous effort to eliminate cold-start emissions, yet great challenges remain. Here we report a strategy to activate the low-temperature performance of Pt catalysts on Cu-modified CeO2 supports based on redox-coupled atomic layer deposition. The interfacial reducibility and structure of composite catalysts have been precisely tuned by oxide doping and accurate control of Pt size. Cu-modified CeO2-supported Pt sub-nanoclusters demonstrate a remarkable performance with an onset of CO oxidation reactivity below room temperature, which is one order of magnitude more active than atomically-dispersed Pt catalysts. The Cu-O-Ce site with activated lattice oxygen anchors deposited Pt sub-nanoclusters, leading to a moderate CO adsorption strength at the interface that facilitates the low-temperature CO oxidation performance.

13.
Nat Commun ; 11(1): 1646, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242016

RESUMO

The low efficiency and fast degradation of devices from ink-jet printing process hinders the application of quantum dot light emitting diodes on next generation displays. Passivating the trap states caused by both anion and cation under-coordinated sites on the quantum dot surface with proper ligands for ink-jet printing processing reminds a problem. Here we show, by adapting the idea of dual ionic passivation of quantum dots, ink-jet printed quantum dot light emitting diodes with an external quantum efficiency over 16% and half lifetime of more than 1,721,000 hours were reported for the first time. The liquid phase exchange of ligands fulfills the requirements of ink-jet printing processing for possible mass production. And the performance from ink-jet printed quantum dot light emitting diodes truly opens the gate of quantum dot light emitting diode application for industry.

14.
Phys Chem Chem Phys ; 22(5): 2930-2937, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31951227

RESUMO

The Al concentration and distribution have a great influence on the hydrothermal stability of the H-SSZ-13 zeolites in experiments. In this work, first-principles calculations are performed to clarify the decomposition mechanism of an H-SSZ-13 framework with adjacent Al atom pair distribution under hydrothermal conditions. It is found that the adjacent Al atoms have a tendency to occupy the para-sites of the 4-membered rings (4MRs) in the framework. Water molecules are chemisorbed onto the Al atom one by one, and the hydroxylation of the neighboring O atoms induces the breaking of the Al-O bonds, which causes the first dealumination in 4MRs. The other Al atom in the para-site can be easily removed from the framework once the first one is lost. The feasible subsequent dealumination of adjacent Al atoms would break the linker of 6MRs in the framework, which is responsible for the degraded hydrothermal stability. Moreover, the partial substitution of metal ions (such as Na+ and Cu+) for the protons in the framework will greatly stabilize the Al-O bonds and enlarge the energy barrier of para-site Al dealumination, which leads to the improved hydrothermal stability of H-SSZ-13.

15.
ACS Appl Mater Interfaces ; 9(37): 32054-32064, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853856

RESUMO

The recent booming development of wearable electronics urgently calls for high-performance flexible strain sensors. To date, it is still a challenge to manufacture flexible strain sensors with superb sensitivity and a large workable strain range simultaneously. Herein, a facile, quick, cost-effective, and scalable strategy is adopted to fabricate novel strain sensors based on reduced graphene oxide woven fabrics (GWF). By pyrolyzing commercial cotton bandages coated with graphene oxide (GO) sheets in an ethanol flame, the reduction of GO and the pyrolysis of the cotton bandage template can be synchronously completed in tens of seconds. Due to the unique hierarchical structure of the GWF, the strain sensor based on GWF exhibits large stretchability (57% strain) with high sensitivity, inconspicuous drift, and durability. The GWF strain sensor is successfully used to monitor full-range (both subtle and vigorous) human activities or physical vibrational signals of the local environment. The present work offers an effective strategy to rapidly prepare low-cost flexible strain sensors with potential applications in the fields of wearable electronics, artificial intelligence devices, and so forth.

16.
Phys Chem Chem Phys ; 19(21): 14178-14184, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28530305

RESUMO

Photoelectrochemical water splitting holds great potential for solar energy conversion and storage with zero greenhouse gas emission. Integration of a suitable co-catalyst with an absorber material enables the realization of highly efficient photocleavage of water. Herein, nanostructured hematite film was coated with an ultrathin and conformal CoOx overlayer through atomic layer deposition (ALD). The best performing hybrid hematite with a 2-3 nm ALD CoOx overlayer yielded a remarkable turn on potential of 0.6 VRHE for the water oxidation reaction. Moreover, material analyses revealed that the surface amorphous CoOx/Co(OH)2 component exhibited good optical transparency and hydrophilic properties, which were beneficial for the formation of an ideal hematite/electrolyte interface. In addition to the presence of the CoOx overlayer, a negative shift of flat band potential (VFB) as well as suppression of surface recombination helped to significantly promote the charge separation and collection properties, contributing to the overall solar conversion efficiency. As a result, the external quantum efficiency (IPCE) obtained on hematite increases by 66% at 1.23 VRHE.

17.
ACS Appl Mater Interfaces ; 9(3): 2509-2515, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28054481

RESUMO

Good electronic transport capacity and low lattice thermal conductivity are beneficial for thermoelectric applications. In this study, the potential use as a thermoelectric material for the recently synthesized two-dimensional TiS3 monolayer is explored by applying first-principles method combined with Boltzmann transport theory. Our work demonstrates that carrier transport in the TiS3 sheet is orientation-dependent, caused by the difference in charge density distribution at band edges. Due to a variety of Ti-S bonds with longer lengths, we find that the TiS3 monolayer shows thermal conductivity much lower compared with that of transition-metal dichalcogenides such as MoS2. Combined with a high power factor along the y-direction, a considerable n-type ZT value (3.1) can be achieved at moderate carrier concentration, suggesting that the TiS3 monolayer is a good candidate for thermoelectric applications.

18.
Phys Chem Chem Phys ; 17(25): 16398-404, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26051226

RESUMO

The structural, electronic, electrochemical as well as diffusion properties of Na doped phosphorene have been investigated based on first-principles calculations. The strong binding energy between Na and phosphorene indicates that Na could be stabilized on the surface of phosphorene without clustering. By comparing the adsorption of Na atoms on one side and on both sides of phosphorene, it has been found that Na-Na exhibits strong repulsion at the Na-Na distance of less than 4.35 Å. The Na intercalation capacity is estimated to be 324 mA h g(-1) and the calculated discharge curve indicates quite a low Na(+)/Na voltage of phosphorene. Moreover, the diffusion energy barrier of Na atoms on the phosphorene surface at both low and high Na concentrations is as low as 40-63 meV, which implies the high mobility of Na during the charge/discharge process.

19.
Nat Commun ; 6: 6929, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25906991

RESUMO

Sodium-ion batteries are emerging as a highly promising technology for large-scale energy storage applications. However, it remains a significant challenge to develop an anode with superior long-term cycling stability and high-rate capability. Here we demonstrate that the Na(+) intercalation pseudocapacitance in TiO2/graphene nanocomposites enables high-rate capability and long cycle life in a sodium-ion battery. This hybrid electrode exhibits a specific capacity of above 90 mA h g(-1) at 12,000 mA g(-1) (∼36 C). The capacity is highly reversible for more than 4,000 cycles, the longest demonstrated cyclability to date. First-principle calculations demonstrate that the intimate integration of graphene with TiO2 reduces the diffusion energy barrier, thus enhancing the Na(+) intercalation pseudocapacitive process. The Na-ion intercalation pseudocapacitance enabled by tailor-deigned nanostructures represents a promising strategy for developing electrode materials with high power density and long cycle life.

20.
ACS Appl Mater Interfaces ; 7(1): 422-31, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25493324

RESUMO

Composite Co3O4/TiO2 nanotube arrays (NTs) were fabricated via atomic layer deposition (ALD) of Co3O4 thin film onto well-aligned anodized TiO2 NTs. The microscopic morphology, composition, and interfacial plane of the composite structure were characterized by scanning electron microscopy, energy dispersion mapping, X-ray photoelectron spectra, and high-resolution transmission electron microscopy. It was shown that the ultrathin Co3O4 film uniformly coat onto the inner wall of the high aspect ratio (>100:1) TiO2 NTs with film thickness precisely controlled by the number of ALD deposition cycles. The composite structure with ∼4 nm Co3O4 coating revealed optimal photoelectrochemical (PEC) performance in the visible-light range (λ > 420 nm). The photocurrent density reaches as high as 90.4 µA/cm(2), which is ∼14 times that of the pristine TiO2 NTs and 3 times that of the impregnation method. The enhanced PEC performance could be attributed to the finely controlled Co3O4 coating layer that enhances the visible-light absorption, maintains large specific surface area to the electrolyte interface, and facilitates the charge transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA