Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(5): 2925-2933, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38691827

RESUMO

A "one-step" strategy has been demonstrated for the tunable synthesis of multifunctional aliphatic polycarbonates (APCs) with ethylene oxide (EO), ethylene carbonate (EC), and cyclohexene oxide (CHO) side groups by the copolymerization of 4-vinyl-1-cyclohexene diepoxide with carbon dioxide under an aminotriphenolate iron/PPNBz (PPN = bis(triphenylphosphine)-iminium, Bz = benzoate) binary catalyst. By adjusting the PPNBz-to-iron complex ratio and incorporating auxiliary solvents, the content of functional side groups can be tuned within the ranges of 53-75% for EO, 18-47% for EC, and <1-7% for CHO. The yield and molecular weight distribution of the resulting multifunctional APCs are affected by the viscosity of the polymerization system. The use of tetrahydrofuran as an auxiliary solvent enables the preparation of narrow-distribution polycarbonates at high conversion. This work presents a novel perspective for the preparation of tailorable multifunctional APCs.


Assuntos
Dióxido de Carbono , Cimento de Policarboxilato , Polimerização , Dióxido de Carbono/química , Cimento de Policarboxilato/química , Compostos de Epóxi/química , Óxido de Etileno/química , Cicloexenos/química , Catálise , Viscosidade , Dioxolanos
2.
Int J Biol Macromol ; 242(Pt 3): 124947, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211078

RESUMO

Lignin is one of the major macromolecule in nature that contains an aromatic ring structure, and also a potential source of high-value products such as biofuels and chemicals. However, Lignin is a kind of complex heterogeneous polymer which can produce many degradation products during processing or treatment. These degradation products are difficult to separate, making it challenging to use lignin directly for high-value applications. This study proposes an electrocatalytic method to degrade lignin by using allyl halides to induce double-bonded phenolic monomers, while avoiding separation. In an alkaline solution, the three basic structural units (G, S, and H) of lignin were transformed into phenolic monomers by introducing allyl halide, which could effectively expand lignin application space. This reaction was achieved using a Pb/PbO2 electrode as the anode and copper as the cathode. It was further confirmed that double-bonded phenolic monomers were obtained by degradation. 3-allylbromide has more active allyl radicals and significantly higher product yields than 3-allylchloride. The yields of 4-allyl-2-methoxyphenol, 4-allyl-2,6-dimethoxyphenol and 2-allylphenol could reach 17.21 g/kg-lignin, 7.75 g/kg-lignin, and 0.67 g/kg-lignin respectively. These mixed double-bond monomers can be used as monomer materials for in-situ polymerization without further separation, which lays the foundation for high value-added applications of lignin.


Assuntos
Eugenol , Lignina , Lignina/química , Polimerização , Cobre
3.
Environ Sci Pollut Res Int ; 27(23): 29441-29450, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32436097

RESUMO

In this paper, we proposed a novel method to eliminate nocuous Cr(VI) from chromium slag with poplar lignin by electrochemical treatment in sulfuric acid solution. In this electrochemical process, self-made Ti/SnO2-Sb anode and graphite cathode were applied, and the oxidative degradation of lignin proceeded simultaneously with the reduction of Cr(VI) in one pot. The influences of pivotal factors on electrocatalytic redox efficiency were investigated, such as chromium slag concentration, lignin concentration, current density, sulfuric acid concentration, and reaction time. The results showed that the elimination rate of Cr(VI) in chromium slag was 97.16 ± 1.13% and the total yield of lignin degradation products reached 93.78 g/kg lignin under the optimal conditions. X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), and UV-visible spectrophotometer studies confirmed that most of the Cr(VI) ions were reduced to Cr(III) ions with the aid of lignin, and a small amount of Cr(VI) ions were adsorbed by lignin residue. Importantly, this method provides a typical example of "waste control by waste", which is treating waste chromium slag with waste lignin that can be an effective way to eliminate Cr(VI).


Assuntos
Cromo , Lignina , Ácidos Sulfúricos
4.
Chemistry ; 22(11): 3821-9, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26592522

RESUMO

A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product.

5.
J Org Chem ; 79(13): 6172-8, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24865473

RESUMO

Acetoxyphosphonates were obtained by a one-step procedure consisting of reaction of diethyl acetylphosphonate with prochiral aldehydes in the presence of a catalytic system comprising a chiral Lewis acid, an achiral Lewis base, and a Brønstedt base. Best results were obtained using a tridentate Schiff base aluminum(III) Lewis acidic complex, 1H-1,2,3-benzotriazole, and a tertiary amine such as DBU. The target compounds were in most cases obtained in high yields, but with moderate enantiomeric ratios (up to 78:22).

6.
Chemistry ; 20(13): 3806-12, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24574310

RESUMO

Continuous recycling of the minor product enantiomer obtained from the acetylcyanation of prochiral aldehydes provided access to highly enantiomerically enriched products. Cyanohydrin derivatives, which under normal conditions are obtained with modest or poor enantiomeric ratios, were formed with high enantiomeric purity by using a reinforcing combination of a chiral Lewis acid catalyst and a biocatalyst. The primarily obtained products were transformed into ß-adrenergic antagonists (S)-propanolol, (R)-dichloroisoproterenol, and (R)-pronethalol by means of a two-step procedure.


Assuntos
Antagonistas Adrenérgicos beta/síntese química , Antagonistas Adrenérgicos beta/farmacologia , Aldeídos/química , Nitrilas/síntese química , Propranolol/síntese química , Propranolol/farmacologia , Antagonistas Adrenérgicos beta/química , Catálise , Etanolaminas/síntese química , Etanolaminas/química , Etanolaminas/farmacologia , Isoproterenol/análogos & derivados , Isoproterenol/síntese química , Isoproterenol/química , Isoproterenol/farmacologia , Ácidos de Lewis/química , Estrutura Molecular , Nitrilas/química , Nitrilas/farmacologia , Propranolol/química , Reciclagem , Estereoisomerismo
7.
Org Biomol Chem ; 9(18): 6323-30, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21799979

RESUMO

A series of unsymmetric salen ligands derived from 1,2-diaminocyclohexane bearing an appended Lewis base on the three-position of one aromatic ring were synthesized by the reaction of various functional salicyaldehydes with the condensation product of 1,2-diaminocyclohexane mono(hydrogen chloride) and 3,5-di-tert-butylsalicylaldehyde. These ligands in conjunction with Ti(O(i)Pr)(4) exhibited excellent activity in catalyzing the cyanosilylation of aldehydes with trimethylsilyl cyanide (TMSCN) at mild conditions. The highest activity was observed in the catalyst system with regard to the salen ligand bearing a diethylamino group, which proved to be active even at a high [aldehyde]/[catalyst] ratio up to 50000. In a low catalyst loading of 0.05 mol%, the quantitative conversion of benzaldehyde to the corresponding cyanosilylation product was found within 10 min. at ambient temperature. An intramolecularly cooperative catalysis was proposed wherein the central metal Ti(IV) is suggested to play a role of Lewis acid to activate aldehydes while the appended Lewis base to activate TMSCN.

8.
J Am Chem Soc ; 131(32): 11509-18, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19624164

RESUMO

The mechanism of the copolymerization of CO(2) and epoxides to afford the corresponding polycarbonates catalyzed by a highly active and thermally stable cobalt(III) complex with 1,5,7-triabicyclo[4,4,0] dec-5-ene (designated as TBD, a sterically hindered organic base) anchored on the ligand framework has been studied by means of electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared spectroscopy (FTIR). The single-site, cobalt-based catalyst exhibited excellent activity and selectivity for polymer formation during CO(2)/propylene oxide (PO) copolymerization even at temperatures up to 100 degrees C and high [epoxide]/[catalyst] ratios, and/or low CO(2) pressures. The anchored TBD on the ligand framework plays an important role in maintaining thermal stability and high activity of the catalyst. ESI-MS and FTIR studies, in combination with some control experiments, confirmed the formation of the carboxylate intermediate with regard to the anchored TBD on the catalyst ligand framework. This analysis demonstrated that the formed carboxylate intermediate helped to stabilize the active Co(III) species against decomposition to inactive Co(II) by reversibly intramolecular Co-O bond formation and dissociation. Previous studies of binary catalyst systems based on Co(III)-Salen complexes did not address the role of these nucleophilic cocatalysts in stabilizing active Co(III) species during the copolymerization. The present study provides a new mechanistic understanding of these binary catalyst systems in which alternating chain-growth and dissociation of propagating carboxylate species derived from the nucleophilic axial anion and the nucleophilic cocatalyst take turns at both sides of the Co(III)-Salen center. This significantly increases the reaction rate and also helps to stabilize the active SalenCo(III) against decomposition to inactive SalenCo(II) even at low CO(2) pressures and/or relatively high temperatures.


Assuntos
Dióxido de Carbono/síntese química , Cobalto/química , Compostos de Epóxi/síntese química , Polímeros/síntese química , Catálise , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA