Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Environ Toxicol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162397

RESUMO

Osteosarcoma, known for its rapid progression and high metastatic potential, poses significant challenges in adolescent oncology. This study delves into the roles of lipid metabolism and acetylation genes in the disease's pathogenesis. Utilizing gene set variation analysis, we examined 14 lipid metabolism-related pathways in osteosarcoma patients, identifying significant variances in three pathways between metastatic and primary cases. Additionally, differences in four acetylation genes between these groups were observed. A comprehensive analysis pinpointed 62 lipid metabolism-related genes, with 39 exhibiting significant correlations with acetylation genes, termed lipid metabolism acetylation (LMA) genes. Employing machine learning techniques like Lasso+RSF and GBM, we developed a predictive model for overall survival based on LMA genes. This model, with an average c-index of 0.771, focuses on three key genes: CYP2C8, PAFAH2, and ACOX3, whose prognostic value was confirmed through survival and receiver operating characteristic curve analyses. Quantitative RT-PCR results indicated higher expression levels of ACOX3 and PAFAH2 in OS cells (143B, HOS, MG63) than in osteoblasts (hFOB1.19), while CYP2C8 was lower in OS cells. Furthermore, drug sensitivity analysis through the pRRophetic algorithm suggested potential targeted therapies, revealing drugs with differential sensitivity based on LMA scores and varied treatment responses related to the expression of core genes. This study not only highlights the crucial role of lipid metabolism and acetylation in osteosarcoma but also offers a foundation for personalized treatment strategies, marking a notable advancement in combating this severe form of adolescent cancer.

2.
J Am Med Dir Assoc ; : 105219, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39155044

RESUMO

BACKGROUND: The distinctive differences in clinical needs and disease trajectory between persons with young-onset (YOD) and late-onset dementia (LOD) make dementia palliative care unique. Limited studies have reported on the differences in palliative care needs between YOD and LOD, and the optimal time point to introduce palliative care in YOD remains controversial. We performed a systematic review to summarize key issues surrounding palliative care in YOD and highlight unmet needs in this pertinent area. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched the PubMed database for all studies published between January 2000 and July 2022 that reported on palliative care in YOD. RESULTS: Of 32 records identified, 8 articles were eligible for inclusion. The top 3 themes extracted centered around (1) clinical differences between YOD and LOD, (2) symptoms and causes of death in end-stage YOD, and (3) the importance of early advanced care planning (ACP). YOD diagnosis is often delayed and persons with YOD have fewer somatic comorbidities but more neuropsychiatric symptoms, longer survival times, and a more malignant disease course. Persons with YOD and their families face unique psychosocial challenges when symptoms start at a younger age. End-stage YOD is not dissimilar to LOD where patients suffer from a broad spectrum of physical and psychological symptoms requiring palliation. Early initiation of ACP discussion is crucial in YOD given the more rapid progression of disease affecting cognition and decision-making capacity; however, rates of ACP completion in YOD remain low. CONCLUSIONS: Given the complex care needs and more rapid disease trajectory in YOD, palliative care in YOD should be considered from the time of diagnosis, and to be incorporated into routine dementia care.

3.
Angew Chem Int Ed Engl ; : e202412434, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177989

RESUMO

The practical application of solid-state polymer lithium-metal batteries (LMBs) is plagued by the inferior ionic conductivity of the applied polymer electrolytes (PEs), which is caused by the coupling of ion transport with the motion of polymer segments. Here, solvated molecules based on ionic liquid and lithium salt with strong Li+-solvent interaction are inserted into an elaborately engineered perfluoropolymer electrolyte via ionic dipole interaction, extensively facilitating Li+ transport and improving mechanical properties. The intensified formation of solvation structures of contact ion pairs and ionic aggregates, as well as the strong electron-withdrawal properties of the F atoms in perfluoropolymers, give the PE high electrochemical stability and excellent interfacial stability. As a result, Li||Li symmetric cells demonstrate a lifetime of 2500 h and an exceptionally high critical current density above 2.3 mA cm-2, Li||LiFePO4 batteries exhibit consistent cycling for 550 cycles at 10 C, and Li||uncoated LiNi0.8Co0.1Mn0.1O2 cells achieve 1000 cycles at 0.5 C with an average Coulombic efficiency of 98.45%, one of the best results reported to date based on PEs. Our discovery sheds fresh light on the targeted synergistic regulation of the electro-chemo-mechanical properties of PEs to extend the cycle life of LMBs.

4.
Front Pharmacol ; 15: 1408031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983916

RESUMO

Introduction: Alzheimer's disease (AD) represents a critical global health challenge with limited therapeutic options, prompting the exploration of alternative strategies. A key pathology in AD involves amyloid beta (Aß) aggregation, and targeting both Aß aggregation and oxidative stress is crucial for effective intervention. Natural compounds from medicinal and food sources have emerged as potential preventive and therapeutic agents, with Nelumbo nucifera leaf extract (NLE) showing promising properties. Methods: In this study, we utilized transgenic Caenorhabditis elegans (C. elegans) models to investigate the potential of NLE in countering AD and to elucidate the underlying mechanisms. Various assays were employed to assess paralysis rates, food-searching capabilities, Aß aggregate accumulation, oxidative stress, lifespan under stress conditions, and the expression of stress-resistance-related proteins. Additionally, autophagy induction was evaluated by measuring P62 levels and the formation of LGG-1+ structures, with RNAi-mediated inhibition of autophagy-related genes to confirm the mechanisms involved. Results: The results demonstrated that NLE significantly reduced paralysis rates in CL4176 and CL2006 worms while enhancing food-searching capabilities in CL2355 worms. NLE also attenuated Aß aggregate accumulation and mitigated Aß-induced oxidative stress in C. elegans. Furthermore, NLE extended the lifespan of worms under oxidative and thermal stress conditions, while concurrently increasing the expression of stress-resistance-related proteins, including SOD-3, GST-4, HSP-4, and HSP-6. Moreover, NLE induced autophagy in C. elegans, as evidenced by reduced P62 levels in BC12921 worms and the formation of LGG-1+ structures in DA2123 worms. The RNAi-mediated inhibition of autophagy-related genes, such as bec-1 and vps-34, negated the protective effects of NLE against Aß-induced paralysis and aggregate accumulation. Discussion: These findings suggest that NLE ameliorates Aß-induced toxicity by activating autophagy in C. elegans. The study underscores the potential of NLE as a promising candidate for further investigation in AD management, offering multifaceted approaches to mitigate AD-related pathology and stress-related challenges.

5.
Adv Sci (Weinh) ; : e2404266, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986026

RESUMO

Precisely controlling the product selectivity of a reaction is an important objective in organic synthesis. α-Ketoamides are vital intermediates in chemical transformations and privileged motifs in numerous drugs, natural products, and biologically active molecules. The selective synthesis of α-ketoamides from feedstock chemicals in a safe and operationally simple manner under mild conditions is a long-standing catalysis challenge. Herein, an unprecedented TBD-switched Pd-catalyzed double isocyanide insertion reaction for assembling ketoamides in aqueous DMSO from (hetero)aryl halides and pseudohalides under mild conditions is reported. The effectiveness and utility of this protocol are demonstrated by its diverse substrate scope (93 examples), the ability to late-stage modify pharmaceuticals, scalability to large-scale synthesis, and the synthesis of pharmaceutically active molecules. Mechanistic studies indicate that TBD is a key ligand that modulates the Pd-catalyzed double isocyanide insertion process, thereby selectively providing the desired α-ketoamides in a unique manner. In addition, the imidoylpalladium(II) complex and α-ketoimine amide are successfully isolated and determined by X-ray analysis, confirming that they are probable intermediates in the catalytic pathway.

6.
Adv Sci (Weinh) ; : e2403358, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973351

RESUMO

Conductive polymer hydrogels exhibit unique electrical, electrochemical, and mechanical properties, making them highly competitive electrode materials for stretchable high-capacity energy storage devices for cutting-edge wearable electronics. However, it remains extremely challenging to simultaneously achieve large mechanical stretchability, high electrical conductivity, and excellent electrochemical properties in conductive polymer hydrogels because introducing soft insulating networks for improving stretchability inevitably deteriorates the connectivity of rigid conductive domain and decreases the conductivity and electrochemical activity. This work proposes a distinct confinement self-assembly and multiple crosslinking strategy to develop a new type of organic-inorganic hybrid conductive hydrogels with biphase interpenetrating cross-linked networks. The hydrogels simultaneously exhibit high conductivity (2000 S m-1), large stretchability (200%), and high electrochemical activity, outperforming existing conductive hydrogels. The inherent mechanisms for the unparalleled comprehensive performances are thoroughly investigated. Elastic all-hydrogel supercapacitors are prepared based on the hydrogels, showing high specific capacitance (212.5 mF cm-2), excellent energy density (18.89 µWh cm-2), and large deformability. Moreover, flexible self-powered luminescent integrated systems are constructed based on the supercapacitors, which can spontaneously shine anytime and anywhere without extra power. This work provides new insights and feasible avenues for developing high-performance stretchable electrode materials and energy storage devices for wearable electronics.

7.
BMC Oral Health ; 24(1): 733, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926705

RESUMO

BACKGROUND: Human periodontal ligament stem cells (hPDLSCs) are important candidate seed cells for periodontal tissue engineering, but the presence of lipopolysaccharide(LPS) in periodontal tissues inhibits the self-renewal and osteogenic differentiation of hPDLSCs. Our previous studies demonstrated that TAZ is a positive regulator of osteogenic differentiation of hPDLSCs, but whether TAZ can protect hPDLSCs from LPS is still unknown. The present study aimed to explore the regulatory effect of TAZ on the osteogenic differentiation of hPDLSCs in an LPS-induced inflammatory model, and to preliminarily reveal the molecular mechanisms related to the NF-κB signaling pathway. METHODS: LPS was added to the culture medium of hPDLSCs. The influence of LPS on hPDLSC proliferation was analyzed by CCK-8 assays. The effects of LPS on hPDLSC osteogenic differentiation were detected by Alizarin Red staining, ALP staining, Western Blot and qRT-PCR analysis of osteogenesis-related genes. The effects of LPS on the osteogenic differentiation of hPDLSCs with TAZ overexpressed or knocked down via lentivirus were analyzed. NF-κB signaling in hPDLSCs was analyzed by Western Blot and immunofluorescence. RESULTS: LPS inhibited the osteogenic differentiation of hPDLSCs, inhibited TAZ expression, and activated the NF-κB signaling pathway. Overexpressing TAZ in hPDLSCs partly reversed the negative effects of LPS on osteogenic differentiation and inhibited the activation of the NF-κB pathway by LPS. TAZ knockdown enhanced the inhibitory effects of LPS on osteogenesis. CONCLUSION: Overexpressing TAZ could partly reverse the inhibitory effects of LPS on the osteogenic differentiation of hPDLSCs, possibly through inhibiting the NF-κB signaling pathway. TAZ is a potential target for improving hPDLSC-based periodontal tissue regeneration in inflammatory environments.


Assuntos
Diferenciação Celular , Lipopolissacarídeos , NF-kappa B , Osteogênese , Ligamento Periodontal , Transdução de Sinais , Células-Tronco , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Osteogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Western Blotting
8.
Fundam Res ; 4(1): 140-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933831

RESUMO

Stretchable power sources, especially stretchable lithium-ion batteries (LIBs), have attracted increasing attention due to their enormous prospects for powering flexible/wearable electronics. Despite recent advances, it is still challenging to develop ultra-stretchable LIBs that can withstand large deformation. In particular, stretchable LIBs require an elastic electrolyte as a basic component, while the conductivity of most elastic electrolytes drops sharply during deformation, especially during large deformations. This is why highly stretchable LIBs have not yet been realized until now. As a proof of concept, a super-stretchable LIB with strain up to 1200% is created based on an intrinsically super-stretchable polymer electrolyte as the lithium-ion conductor. The super-stretchable conductive system is constructed by an effective diblock copolymerization strategy via photocuring of vinyl functionalized 2-ureido-4-pyrimidone (VFUpy), an acrylic monomer containing succinonitrile and a lithium salt, achieving high ionic conductivity (3.5 × 10-4 mS cm-1 at room temperature (RT)) and large deformation (the strain can reach 4560%). The acrylic elastomer containing Li-ion conductive domains can strongly increase the compatibility between the neighboring elastic networks, resulting in high ionic conductivity under ultra-large deformation, while VFUpy increases elasticity modulus (over three times) and electrochemical stability (voltage window reaches 5.3 V) of the prepared polymer conductor. At a strain of up to 1200%, the resulting stretchable LIBs are still sufficient to power LEDs. This study sheds light on the design and development of high-performance intrinsically super-stretchable materials for the advancement of highly elastic energy storage devices for powering flexible/wearable electronics that can endure large deformation.

9.
Brain Res Bull ; 214: 111008, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866373

RESUMO

The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1ß (IL-1ß), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-ß (TGF-ß) in the IL cortex. Electrophysiological recordings revealed a significant decrease in the intrinsic excitability of layer V pyramidal neurons in the IL following systemic LPS exposure. Importantly, chemogenetic activation of IL pyramidal neurons ameliorated LPS-induced depressive-like behavior. Additionally, LPS administration significantly increased microglial activity in the IL, as evidenced by a greater number of Ionized calcium binding adaptor molecule-1 (IBA-1)-positive cells. Morphometric analysis further unveiled enlarged soma, decreased branch numbers, and shorter branch lengths of microglial cells in the IL cortex following LPS exposure. Moreover, the activation of pyramidal neurons by clozapine-N-oxide increased the microglia branch length but did not change branch number or cytosolic area. These results collectively suggest that targeted activation of pyramidal neurons in the IL cortex mitigates microglial response and ameliorates depressive-like behaviors induced by systemic LPS administration. Therefore, our findings offer potential therapeutic targets for the development of interventions aimed at alleviating depressive symptoms by modulating IL cortical circuitry and microglial activity.


Assuntos
Lipopolissacarídeos , Microglia , Células Piramidais , Animais , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Depressão/induzido quimicamente , Depressão/metabolismo , Depressão/tratamento farmacológico , Clozapina/farmacologia , Clozapina/análogos & derivados , Modelos Animais de Doenças , Transtorno Depressivo Maior/metabolismo
10.
mBio ; 15(6): e0064024, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38727246

RESUMO

Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Mensageiro , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Macrófagos Alveolares/virologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Interações Hospedeiro-Patógeno/genética , Interferon gama/genética , Interferon gama/metabolismo , Interferon gama/imunologia , Transcrição Gênica
11.
Sci Total Environ ; 933: 173161, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735313

RESUMO

Enterohepatic circulation has been reported to play a significant role in the bioaccumulation of PFASs. In this study, the tissue distribution and excretion of PFOS and its alternatives, namely 6:2 and 8:2 fluorotelomer sulfonic acid (FTSA) was investigated using a mouse assay with a focus on role of enterohepatic circulation. Liver was the primarily accumulating organ for PFOS and 8:2 FTSA (33.4 % and 25.8 % of total doses absorbed after 14 days), whereas 65 % of 6:2 FTSA was excreted via urine within 24 h. Peak levels of 8:2 FTSA and PFOS were found in the gallbladder, implying the important role of enterohepatic circulation in PFASs reabsorption. The role of enterohepatic circulation was further evaluated through co-exposure of 8:2 FTSA and PFOS with medicines (namely metformin (MET) and ursodeoxycholic acid (UDCA)). MET reduced accumulation of 8:2 FTSA and PFOS in the liver by 68.6 % and 65.8 %, through down-regulation of bile acid transporter (Asbt) and enhancement of fecal excretion. Conversely, UDCA raised their concentrations by 21.9 % and 34.6 % compared to that exposed solely to PFASs. A strong positive correlation was identified between PFASs serum levels and Asbt expression. This study illuminated PFAS bioaccumulation mechanisms and suggested potential strategies to mitigate the exposure risks.


Assuntos
Ácidos Alcanossulfônicos , Circulação Êntero-Hepática , Fluorocarbonos , Fluorocarbonos/metabolismo , Ácidos Alcanossulfônicos/metabolismo , Animais , Camundongos , Poluentes Ambientais/metabolismo , Fígado/metabolismo , Distribuição Tecidual
12.
Curr Res Food Sci ; 8: 100741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694556

RESUMO

Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.

13.
Ecol Lett ; 27(6): e14446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38814284

RESUMO

Grime's competitive, stress-tolerant, ruderal (CSR) theory predicts a shift in plant communities from ruderal to stress-tolerant strategies during secondary succession. However, this fundamental tenet lacks empirical validation using long-term continuous successional data. Utilizing a 60-year longitudinal data of old-field succession, we investigated the community-level dynamics of plant strategies over time. Our findings reveal that while plant communities generally transitioned from ruderal to stress-tolerant strategies during succession, initial abandonment conditions crucially shaped early successional strategies, leading to varied strategy trajectories across different fields. Furthermore, we found a notable divergence in the CSR strategies of alien and native species over succession. Initially, alien and native species exhibited similar ruderal strategies, but in later stages, alien species exhibited higher ruderal and lower stress tolerance compared to native species. Overall, our findings underscore the applicability of Grime's predictions regarding temporal shifts in CSR strategies depending on both initial community conditions and species origin.


Assuntos
Espécies Introduzidas , Plantas , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico , Ecossistema , Modelos Biológicos , Desenvolvimento Vegetal
14.
Viruses ; 16(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793564

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that causes severe abortions in sows and high piglet mortality, resulting in huge economic losses to the pig industry worldwide. The emerging and novel PRRSV isolates are clinically and biologically important, as there are likely recombination and pathogenic differences among PRRSV genomes. Furthermore, the NADC34-like strain has become a major epidemic strain in some parts of China, but the characterization and pathogenicity of the latest strain in Inner Mongolia have not been reported in detail. In this study, an NADC34-like strain (CHNMGKL1-2304) from Tongliao City, Inner Mongolia was successfully isolated and characterized, and confirmed the pathogenicity in pigs. The phylogenetic tree showed that this strain belonged to sublineage 1.5 and had high homology with the strain JS2021NADC34. There is no recombination between CHNMGKL1-2304 and any other domestic strains. Animal experiments show that the CHNMGKL1-2304 strain is moderately virulent to piglets, which show persistent fever, weight loss and high morbidity but no mortality. The presence of PRRSV nucleic acids was detected in both blood, tissues, nasal and fecal swabs. In addition, obvious pathological changes and positive signals were observed in lung, lymph node, liver and spleen tissues when subjected to hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). This report can provide a basis for epidemiological investigations and subsequent studies of PRRSV.


Assuntos
Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , China , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Virulência , Evolução Molecular
15.
Org Biomol Chem ; 22(16): 3204-3208, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563260

RESUMO

An efficient palladium-catalyzed [2 + 2 + 1] annulation of 3-iodochromones, bridged olefins, and iodomethane is described, affording a range of chromone-containing polycyclic compounds. Additionally, the corresponding deuterated products were smoothly obtained with iodomethane-d3 instead of iodomethane. Moreover, the synthetic utility of this method is further substantiated by gram scale preparation and application to late-stage modification of estrone.

16.
Neurosci Bull ; 40(7): 921-936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38498092

RESUMO

As a noninvasive technique, ultrasound stimulation is known to modulate neuronal activity both in vitro and in vivo. The latest explanation of this phenomenon is that the acoustic wave can activate the ion channels and further impact the electrophysiological properties of targeted neurons. However, the underlying mechanism of low-intensity pulsed ultrasound (LIPUS)-induced neuro-modulation effects is still unclear. Here, we characterize the excitatory effects of LIPUS on spontaneous activity and the intracellular Ca2+ homeostasis in cultured hippocampal neurons. By whole-cell patch clamp recording, we found that 15 min of 1-MHz LIPUS boosts the frequency of both spontaneous action potentials and spontaneous excitatory synaptic currents (sEPSCs) and also increases the amplitude of sEPSCs in hippocampal neurons. This phenomenon lasts for > 10 min after LIPUS exposure. Together with Ca2+ imaging, we clarified that LIPUS increases the [Ca2+]cyto level by facilitating L-type Ca2+ channels (LTCCs). In addition, due to the [Ca2+]cyto elevation by LIPUS exposure, the Ca2+-dependent CaMKII-CREB pathway can be activated within 30 min to further regulate the gene transcription and protein expression. Our work suggests that LIPUS regulates neuronal activity in a Ca2+-dependent manner via LTCCs. This may also explain the multi-activation effects of LIPUS beyond neurons. LIPUS stimulation potentiates spontaneous neuronal activity by increasing Ca2+ influx.


Assuntos
Canais de Cálcio Tipo L , Cálcio , Hipocampo , Neurônios , Ondas Ultrassônicas , Animais , Hipocampo/metabolismo , Neurônios/fisiologia , Neurônios/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ratos , Potenciais de Ação/fisiologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley
17.
Int J Biol Macromol ; 264(Pt 1): 130556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431014

RESUMO

The aim of this study was to investigate the effects of acetylation modification on the structural, interfacial and emulsifying properties of Millettia speciosa Champ polysaccharide (MSCP). Besides, the influence of acetylation modification on the encapsulation properties of polysaccharide-based emulsion was also explored. Results indicated that modification resulted in a prominent reduction in molecular weight of MSCP and the interfacial layer thickness formed by acetylated MSCP (AC-MSCP) was also decreased, but the adsorption rate and ability of AC-MSCP to reduce interfacial tension were improved. AC-MSCP formulated emulsion possessed smaller droplet size (6.8 µm) and exhibited better physical stability under stressful conditions. The chemical stability of ß-carotene was also profoundly enhanced by AC-MSCP fabricated emulsion. Moreover, AC-MSCP improved lipids digestion extent, thus facilitating the formation of micelle and increasing bioaccessibility of ß-carotene. This study provided insights for rational modification of polysaccharide-based emulsifier and designing delivery system for chemically labile hydrophobic bioactive components.


Assuntos
Millettia , beta Caroteno , Emulsões/química , beta Caroteno/química , Polissacarídeos/química , Emulsificantes/química
18.
Digit Health ; 10: 20552076241228433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303969

RESUMO

Objective: Diet significantly contributes to dental decay (caries) yet monitoring and modifying patients' diets is a challenge for many dental practitioners. While many oral health and diet-tracking mHealth apps are available, few focus on the dietary risk factors for caries. This study aims to present the development and key features of a dental-specific mobile app for diet monitoring and dietary behaviour change to prevent caries, and pilot data from initial user evaluation. Methods: A mobile app incorporating a novel photo recognition algorithm and a localised database of 208,718 images for food item identification was developed. The design and development process were iterative and incorporated several behaviour change techniques commonly used in mHealth. Pilot evaluation of app quality was assessed using the end-user version of the Mobile Application Rating Scale (uMARS). Results: User feedback from the beta-testing of the prototype app spurred the improvement of the photo recognition algorithm and addition of more user-centric features. Other key features of the final app include real-time prompts to drive actionable behaviour change, goal setting, comprehensive oral health education modules, and visual metrics for caries-related dietary factors (sugar intake, meal frequency, etc.). The final app scored an overall mean (standard deviation) of 3.6 (0.5) out of 5 on the uMARS scale. Conclusion: We developed a novel diet-tracking mobile app tailored for oral health, addressing a gap in the mHealth landscape. Pilot user evaluations indicated good app quality, suggesting its potential as a useful clinical tool for dentists and empowering patients for self-monitoring and behavioural management.

19.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366990

RESUMO

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Assuntos
Imunoglobulina G , Doenças Vasculares , Humanos , Feminino , Gravidez , Animais , Bovinos , Farmacologia em Rede , Espectrometria de Massas em Tandem , Células CACO-2 , Colostro/metabolismo , Peróxido de Hidrogênio , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular
20.
Nat Commun ; 15(1): 1330, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351066

RESUMO

Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.


Assuntos
Cidadania , Ecossistema , Humanos , Tamanho do Genoma , Espécies Introduzidas , Ecologia , Biodiversidade , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA