Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 103013, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36781123

RESUMO

Accurately completing DNA replication when two forks converge is essential to genomic stability. The RecBCD helicase-nuclease complex plays a central role in completion by promoting resection and joining of the excess DNA created when replisomes converge. chi sequences alter RecBCD activity and localize with crossover hotspots during sexual events in bacteria, yet their functional role during chromosome replication remains unknown. Here, we use two-dimensional agarose gel analysis to show that chi induces replication on substrates containing convergent forks. The induced replication is processive but uncoupled with respect to leading and lagging strand synthesis and can be suppressed by ter sites which limit replisome progression. Our observations demonstrate that convergent replisomes create a substrate that is processed by RecBCD and that chi, when encountered, switches RecBCD from a degradative to replicative function. We propose that chi serves to functionally differentiate DNA ends created during completion, which require degradation, from those created by chromosomal double-strand breaks, which require resynthesis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , DNA/metabolismo , Replicação do DNA , Cromossomos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Microbiology (Reading) ; 169(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748638

RESUMO

In Bacillus subtilis, iron homeostasis is maintained by the ferric uptake regulator (Fur) and manganese homeostasis relies on the manganese transport regulator (MntR). Both Fur and MntR function as bi-functional metalloregulators that repress import and activate metal ion efflux systems. The ferrous iron efflux ATPase, PfeT, is derepressed by hydrogen peroxide (H2O2) as sensed by PerR and induced by iron as sensed by Fur. Mutants lacking PfeT are sensitive to iron intoxication. Here, we show that mntR mutants are also iron-sensitive, largely due to decreased expression of the MntR-activated MneP and MneS cation diffusion facilitator (CDF) proteins previously defined for their role in Mn2+ export. The ability of MneP and MneS to export iron is apparent even when their expression is not induced by Mn2+. Our results demonstrate that PfeT, MneP and MneS each contribute to iron homeostasis, and a triple mutant lacking all three is more iron-sensitive than any single mutant. We further show that sensitivity to H2O2 does not correlate with iron sensitivity. For example, an mntR mutant is H2O2-sensitive due to elevated Mn(II) that increases PerR-mediated repression of peroxide resistance genes, and this repression is antagonized by elevated Fe2+ in an mntR pfeT mutant. Thus, H2O2-sensitivity reflects the relative levels of Mn2+ and Fe2+ as sensed by the PerR regulatory protein. These results underscore the complex interplay between manganese, iron and oxidative stress in B. subtilis.


Assuntos
Bacillus subtilis , Manganês , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Manganês/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Homeostase , Ferro/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Genes Cells ; 26(2): 94-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33382157

RESUMO

Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV-induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the Escherichia coli genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that oriC initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new oriC initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over-replication in this region of the chromosome. In mutants impaired for restoring elongation, including recA, recF and uvrA, the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including recBC, sbcCD xonA and recG, the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis-segregation of unbalanced or unresolved chromosomes when cells divide.


Assuntos
Dano ao DNA , Replicação do DNA/efeitos da radiação , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Raios Ultravioleta , Cromossomos Bacterianos/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Dosagem de Genes , Genoma Bacteriano , Mutação/genética
4.
mBio ; 13(1): e0009222, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164567

RESUMO

Osmotic stress is a significant physical challenge for free-living cells. Cells from all three domains of life maintain viability during osmotic stress by tightly regulating the major cellular osmolyte potassium (K+) and by import or synthesis of compatible solutes. It has been widely established that in response to high salt stress, many bacteria transiently accumulate high levels of K+, leading to bacteriostasis, with growth resuming only when compatible solutes accumulate and K+ levels are restored to biocompatible levels. Using Bacillus subtilis as a model system, we provide evidence that K+ fluxes perturb Mg2+ homeostasis: import of K+ upon osmotic upshift is correlated with Mg2+ efflux, and Mg2+ reimport is critical for adaptation. The transient growth inhibition resulting from hyperosmotic stress is coincident with loss of Mg2+ and a decrease in protein translation. Conversely, the reimport of Mg2+ is a limiting factor during resumption of growth. Furthermore, we show the essential signaling dinucleotide cyclic di-AMP fluctuates dynamically in coordination with Mg2+ and K+ levels, consistent with the proposal that cyclic di-AMP orchestrates the cellular response to osmotic stress. IMPORTANCE Environments with high concentrations of salt or other solutes impose an osmotic stress on cells, ultimately limiting viability by dehydration of the cytosol. A very common cellular response to high osmolarity is to immediately import high levels of potassium ion (K+), which helps prevent dehydration and allows time for the import or synthesis of biocompatible solutes that allow a resumption of growth. Here, using Bacillus subtilis as a model, we demonstrate that concomitant with K+ import there is a large reduction in intracellular magnesium (Mg2+) mediated by specific efflux pumps. Further, it is the reimport of Mg2+ that is rate-limiting for the resumption of growth. These coordinated fluxes of K+ and Mg2+ are orchestrated by cyclic-di-AMP, an essential second messenger in Firmicutes. These findings amend the conventional model for osmoadaptation and reveal that Mg2+ limitation is the proximal cause of the bacteriostasis that precedes resumption of growth.


Assuntos
Desidratação , Magnésio , Humanos , Pressão Osmótica , Homeostase , AMP Cíclico/metabolismo , Potássio/metabolismo , Proteínas de Bactérias/metabolismo
5.
Infect Immun ; 88(8)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32393509

RESUMO

Colonization by pathogenic bacteria depends on their ability to overcome host nutritional defenses and acquire nutrients. The human pathogen group A streptococcus (GAS) encounters the host defense factor calprotectin (CP) during infection. CP inhibits GAS growth in vitro by imposing zinc (Zn) limitation. However, GAS counterstrategies to combat CP-mediated Zn limitation and the in vivo relevance of CP-GAS interactions to bacterial pathogenesis remain unknown. Here, we report that GAS upregulates the AdcR regulon in response to CP-mediated Zn limitation. The AdcR regulon includes genes encoding Zn import (adcABC), Zn sparing (rpsN.2), and Zn scavenging systems (adcAII, phtD, and phtY). Each gene in the AdcR regulon contributes to GAS Zn acquisition and CP resistance. The ΔadcC and ΔrpsN.2 mutant strains were the most susceptible to CP, whereas the ΔadcA, ΔadcAII, and ΔphtD mutant strains displayed less CP sensitivity during growth in vitro However, the ΔphtY mutant strain did not display an increased CP sensitivity. The varied sensitivity of the mutant strains to CP-mediated Zn limitation suggests distinct roles for individual AdcR regulon genes in GAS Zn acquisition. GAS upregulates the AdcR regulon during necrotizing fasciitis infection in WT mice but not in S100a9-/- mice lacking CP. This suggests that CP induces Zn deficiency in the host. Finally, consistent with the in vitro results, several of the AdcR regulon genes are critical for GAS virulence in WT mice, whereas they are dispensable for virulence in S100a9-/- mice, indicating the direct competition for Zn between CP and proteins encoded by the GAS AdcR regulon during infection.


Assuntos
Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno/imunologia , Complexo Antígeno L1 Leucocitário/imunologia , Regulon , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/patogenicidade , Zinco/metabolismo , Animais , Proteínas de Bactérias/imunologia , Sítios de Ligação , Ligação Competitiva , Calgranulina B/genética , Calgranulina B/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Transporte de Íons , Complexo Antígeno L1 Leucocitário/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/mortalidade , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/metabolismo , Análise de Sobrevida , Virulência , Zinco/imunologia
6.
Nucleic Acids Res ; 48(5): 2199-2208, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32009151

RESUMO

Microorganisms use zinc-sensing regulators to alter gene expression in response to changes in the availability of zinc, an essential micronutrient. Under zinc-replete conditions, the Fur-family metalloregulator Zur binds to DNA tightly in its metallated repressor form to Zur box operator sites, repressing the transcription of zinc uptake transporters. Derepression comes from unbinding of the regulator, which, under zinc-starvation conditions, exists in its metal-deficient non-repressor forms having no significant affinity with Zur box. While the mechanism of transcription repression by Zur is well-studied, little is known on how derepression by Zur could be facilitated. Using single-molecule/single-cell measurements, we find that in live Escherichia coli cells, Zur's unbinding rate from DNA is sensitive to Zur protein concentration in a first-of-its-kind biphasic manner, initially impeded and then facilitated with increasing Zur concentration. These results challenge conventional models of protein unbinding being unimolecular processes and independent of protein concentration. The facilitated unbinding component likely occurs via a ternary complex formation mechanism. The impeded unbinding component likely results from Zur oligomerization on chromosome involving inter-protein salt-bridges. Unexpectedly, a non-repressor form of Zur is found to bind chromosome tightly, likely at non-consensus sequence sites. These unusual behaviors could provide functional advantages in Zur's facile switching between repression and derepression.


Assuntos
DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Sítios de Ligação , Cromossomos Bacterianos/química , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Ligação Proteica , Multimerização Proteica , Análise de Célula Única , Zinco/metabolismo
7.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31964700

RESUMO

Transition metals are essential for life but are toxic when in excess. Metal ion intoxication may result from the mismetallation of essential metal-dependent enzymes with a noncognate metal. To begin to identify enzymes and processes that are susceptible to mismetallation, we have selected for strains with increased resistance to Mn(II) and Co(II). In Bacillus subtilis, cells lacking the MntR metalloregulator are exquisitely sensitive to Mn(II) but can easily become resistant by acquiring mutations affecting the MntH Mn(II) importer. Using transposon mutagenesis, and starting with an mntR mntH strain, we recovered mariner insertions that inactivated the mpfA gene encoding a putative Mg(II) efflux system. Loss of MpfA leads to elevated intracellular Mg(II), increased sensitivity to high Mg(II), and reduced Mn(II) sensitivity. Consistently, we also recovered an insertion disrupting the mgtE riboswitch, which normally restricts expression of the major Mg(II) importer. These results suggest that Mn(II) intoxication results from disruption of a Mg(II)-dependent enzyme or process. Mutations that inactivate MpfA were also recovered in a selection for Co(II) resistance beginning with sensitized strains lacking the major Co(II) efflux pump, CzcD. Since both Mn(II) and Co(II) may mismetallate iron-dependent enzymes, we repeated the selections under conditions of iron depletion imposed by expression of the Listeria monocytogenes FrvA iron exporter. Under conditions of iron depletion, a wider variety of suppressor mutations were recovered, but they still point to a central role for Mg(II) in maintaining metal ion homeostasis.IMPORTANCE Cellular metal ion homeostasis is tightly regulated. When metal ion levels are imbalanced, or when one metal is at toxic levels, enzymes may bind to the wrong metal cofactor. Enzyme mismetallation can impair metabolism, lead to new and deleterious reactions, and cause cell death. Beginning with Bacillus subtilis strains genetically sensitized to metal intoxication through loss of efflux or by lowering intracellular iron, we identified mutations that suppress the deleterious effects of excess Mn(II) or Co(II). For both metals, mutations in mpfA, encoding a Mg(II) efflux pump, suppressed toxicity. These mutant strains have elevated intracellular Mg(II), suggesting that Mg(II)-dependent processes are very sensitive to disruption by transition metals.


Assuntos
Bacillus subtilis/metabolismo , Cobalto/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Adaptação Biológica , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Modelos Biológicos , Óperon
8.
Mol Microbiol ; 111(6): 1638-1651, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30883946

RESUMO

The accurate completion of DNA replication on the chromosome requires RecBCD and structure specific SbcCD and ExoI nucleases. However, the substrates and mechanism by which this reaction occurs remains unknown. Here we show that these completion enzymes operate on plasmid substrates containing two replisomes, but are not required for plasmids containing one replisome. Completion on the two-replisome plasmids requires RecBCD, but does not require RecA and no broken intermediates accumulate in its absence, indicating that the completion reaction occurs normally in the absence of any double-strand breaks. Further, similar to the chromosome, we show that when the normal completion reaction is prevented, an aberrant RecA-mediated recombination process leads to amplifications that drive most of the instabilities associated with the two-replisome substrates. The observations imply that the substrate SbcCD, ExoI and RecBCD act upon in vivo is created specifically by two convergent replisomes, and demonstrate that the function of RecBCD in completing replication is independent of double-strand break repair, and likely promotes joining of the strands of the convergent replication forks.


Assuntos
Replicação do DNA , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , Recombinação Genética , Cromossomos Bacterianos , DNA Bacteriano/genética , Escherichia coli/enzimologia , Exodesoxirribonuclease V/genética , Exonucleases/genética , Recombinases Rec A/genética
9.
Proc Natl Acad Sci U S A ; 115(2): 349-354, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29208713

RESUMO

SbcC-SbcD are the bacterial orthologs of Mre11-Rad50, a nuclease complex essential for genome stability, normal development, and viability in mammals. In vitro, these enzymes degrade long DNA palindromic structures. When inactivated along with ExoI in Escherichia coli, or Sae2 in eukaryotes, palindromic amplifications arise and propagate in cells. However, long DNA palindromes are not normally found in bacterial or human genomes, leaving the cellular substrates and function of these enzymes unknown. Here, we show that during the completion of DNA replication, convergent replication forks form a palindrome-like structural intermediate that requires nucleolytic processing by SbcC-SbcD and ExoI before chromosome replication can be completed. Inactivation of these nucleases prevents completion from occurring, and under these conditions, cells maintain viability by shunting the reaction through an aberrant recombinational pathway that leads to amplifications and instability in this region. The results identify replication completion as an event critical to maintain genome integrity and cell viability, demonstrate SbcC-SbcD-ExoI acts before RecBCD and is required to initiate the completion reaction, and reveal how defects in completion result in genomic instability.


Assuntos
Replicação do DNA , DNA Bacteriano/metabolismo , Desoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/metabolismo , Exonucleases/metabolismo , Cromossomos Bacterianos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Bacteriano/genética , Desoxirribonucleases/genética , Proteínas de Escherichia coli/genética , Exodesoxirribonucleases/genética , Exonucleases/genética , Modelos Genéticos
10.
DNA Repair (Amst) ; 32: 86-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26003632

RESUMO

Several aspects of the mechanism of homologous double-strand break repair remain unclear. Although intensive efforts have focused on how recombination reactions initiate, far less is known about the molecular events that follow. Based upon biochemical studies, current models propose that RecBCD processes double-strand ends and loads RecA to initiate recombinational repair. However, recent studies have shown that RecBCD plays a critical role in completing replication events on the chromosome through a mechanism that does not involve RecA or recombination. Here, we examine several studies, both early and recent, that suggest RecBCD also operates late in the recombination process - after initiation, strand invasion, and crossover resolution have occurred. Similar to its role in completing replication, we propose a model in which RecBCD is required to resect and resolve the DNA synthesis associated with homologous recombination at the point where the missing sequences on the broken molecule have been restored. We explain how the impaired ability to complete chromosome replication in recBC and recD mutants is likely to account for the loss of viability and genome instability in these mutants, and conclude that spontaneous double-strand breaks and replication fork collapse occur far less frequently than previously speculated.


Assuntos
Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/genética , Exodesoxirribonuclease V/genética , Regulação Bacteriana da Expressão Gênica , Reparo de DNA por Recombinação , Cromossomos Bacterianos/química , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Bacteriano/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/metabolismo , Instabilidade Genômica , Recombinação Homóloga , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 111(46): 16454-9, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368150

RESUMO

The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.


Assuntos
Replicação do DNA/fisiologia , DNA Bacteriano/genética , Escherichia coli/genética , Modelos Genéticos , Bacteriólise , Bacteriófago lambda/fisiologia , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Homóloga/genética , Plasmídeos/genética , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Alinhamento de Sequência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA