Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Endocr J ; 69(1): 23-33, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34456194

RESUMO

Chronic stress affects the reproductive health of mammals; however, the impact of adrenocorticotropin hormone (ACTH) level elevation during chronic stress on the reproduction of weaned sows remains unclear. In this study, nine weaned sows with the same parturition date were randomly divided into control group (n = 4) and ACTH group (n = 5). Each group received intravenous administration of ACTH three times daily for 7 days. Blood samples were collected every 3 h after injection. A radioimmunoassay was used to measure the concentrations of cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (P4) and estradiol-17ß (E2) in the blood. Estrus was determined according to changes in the vulva and the boar contact test. The mRNA expressions of glucocorticoid receptor, FSH receptor, LH receptor (LHR) in the corpus luteum (CL) were detected by qRT-PCR. The results showed that ACTH administration substantially delayed the initiation of estrus and the pre-ovulatory LH peak. The sows of control group ovulated within 10 days and the ovulation rate was 100%, while it was 60% in the ACTH group. Two sows of ACTH group showed pseudo-estrus. The E2 concentrations significantly decreased in the ACTH group at 36 h, 42 h and 66 h of the experimental period. The P4 concentrations in the ACTH group significantly decreased at 132, 138, and 147 h of the experimental period. ACTH significantly reduced the LHR mRNA expression in CLs. In conclusion, long-term repeated ACTH administration affects the endocrinology, estrus onset, and ovarian function of weaned sows.


Assuntos
Hormônio Adrenocorticotrópico , Estro , Hormônio Adrenocorticotrópico/farmacologia , Animais , Estradiol , Estro/fisiologia , Feminino , Hormônio Luteinizante , Mamíferos/metabolismo , Ovulação , Progesterona , Suínos , Desmame
2.
Genes (Basel) ; 9(4)2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617344

RESUMO

Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 (PLIN1) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.

3.
J Biochem Mol Toxicol ; 31(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29205955

RESUMO

Oxidative stress (OS) plays an important role in the process of ovarian granulosa cell apoptosis and follicular atresia. The aim of this study was to select antioxidant against OS in ovary tissue. Firstly, we chose the six antioxidants and analyzed the reactive oxygen species (ROS) level in the ovary tissue. The results showed that proanthocyanidins, gallic acid, curcumin, and carotene decrease the ROS level compared with control group. We further demonstrated that both proanthocyanidins and gallic acid increase the antioxidant enzymes activity. Moreover, change in the ROS level was not observed in proanthocyanidins and gallic acid group of brain, liver, spleen, and kidney tissues. Finally, we found that proanthocyanidins and gallic acid inhibit pro-apoptotic genes expression in granulosa cells. Taken together, proanthocyanidins and gallic acid may be the most acceptable and optimal antioxidants specifically against ovarian OS and also may be involved in the inhibition of granulosa cells apoptosis in mouse ovary.


Assuntos
Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proantocianidinas/farmacologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos ICR , Ovário/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
PLoS One ; 11(12): e0167869, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936150

RESUMO

The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs.


Assuntos
Apoptose , Proteína Forkhead Box O1/metabolismo , Células da Granulosa/citologia , MAP Quinase Quinase 4/metabolismo , Estresse Oxidativo , Animais , Feminino , Humanos , Camundongos
5.
Anim Genet ; 47(2): 192-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873330

RESUMO

Drip loss, one of the most important meat quality traits, is characterized by low heritability. To date, the genetic factors affecting the drip loss trait have not been clearly elucidated. The objective of this study was to identify critical candidate genes affecting drip loss. First, we generated a Pietrain × Duroc × Landrace × Yorkshire commercial pig population and obtained phenotypic values for the drip loss trait. Furthermore, we constructed two RNA libraries from pooled samples of longissimus dorsi muscles with the highest (H group) and lowest (L group) drip loss and identified the differentially expressed genes (DEGs) between these extreme phenotypes using RNA-seq technology. In total, 25 883 genes were detected in the H and L group libraries, and none was specifically expressed in only one library. Comparative analysis of gene expression levels found that 150 genes were differentially expressed, of which 127 were upregulated and 23 were downregulated in the H group relative to the L group. In addition, 68 drip loss quantitative trait loci (QTL) overlapping with 63 DEGs were identified, and these QTL were distributed mainly on chromosomes 1, 2, 5 and 6. Interestingly, the triadin (TRDN) gene, which is involved in muscle contraction and fat deposition, and the myostatin (MSTN) gene, which has a role in muscle growth, were localized to more than two drip loss QTL, suggesting that both are critical candidate genes responsible for drip loss.


Assuntos
Cruzamento , Carne , Locos de Características Quantitativas , Suínos/genética , Animais , Proteínas de Transporte/genética , Feminino , Expressão Gênica , Biblioteca Gênica , Masculino , Contração Muscular/genética , Proteínas Musculares/genética , Miostatina/genética , Fenótipo , Análise de Sequência de RNA
6.
Reprod Sci ; 22(6): 696-705, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25425107

RESUMO

Many studies have demonstrated that oxidative stress-induced apoptosis is a main cause of follicular atresia. Reactive oxygen species (ROS)-induced granulosa cell (GC) apoptosis is regulated by a variety of signaling pathways involving numerous genes and transcription factors. In this study, we found expression of the p53-upregulated modulator of apoptosis (PUMA), a BH3-only Bcl-2 subfamily protein, in ovarian GCs during oxidative stress. By overexpression and knockdown of Forkhead box O1 (FoxO1), we found that FoxO1 regulates PUMA at the protein level. Moreover, as c-Jun N-terminal kinase (JNK) has been shown to activate FoxO1 by promoting its nuclear import, we used a JNK inhibitor to reduce FoxO1 activation and detected decreased PUMA messenger RNA expression and protein levels during oxidative stress. In addition, in vivo oxidative stress-induced upregulation of PUMA was found following injection of 3 nitropropionic acid in mice. In conclusion, oxidative stress increases PUMA expression regulated by FoxO1 in follicular GCs.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Atresia Folicular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células da Granulosa/metabolismo , Estresse Oxidativo , Proteínas Supressoras de Tumor/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Feminino , Atresia Folicular/efeitos dos fármacos , Atresia Folicular/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais , Transfecção , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA