Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 57: 197-212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37137428

RESUMO

INTRODUCTION: The continuous emergence and rapid spread of multidrug-resistant bacteria have accelerated the demand for the discovery of alternative antibiotics. Natural plants contain a variety of antibacterial components, which is an important source for the discovery of antimicrobial agents. OBJECTIVE: To explore the antimicrobial activities and related mechanisms of two lavandulylated flavonoids, sophoraflavanone G and kurarinone in Sophora flavescens against methicillin-resistant Staphylococcus aureus. METHODS: The effects of sophoraflavanone G and kurarinone on methicillin-resistant Staphylococcus aureus were comprehensively investigated by a combination of proteomics and metabolomics studies. Bacterial morphology was observed by scanning electron microscopy. Membrane fluidity, membrane potential, and membrane integrity were determined using the fluorescent probes Laurdan, DiSC3(5), and propidium iodide, respectively. Adenosine triphosphate and reactive oxygen species levels were determined using the adenosine triphosphate kit and reactive oxygen species kit, respectively. The affinity activity of sophoraflavanone G to the cell membrane was determined by isothermal titration calorimetry assays. RESULTS: Sophoraflavanone G and kurarinone showed significant antibacterial activity and anti-multidrug resistance properties. Mechanistic studies mainly showed that they could target the bacterial membrane and cause the destruction of the membrane integrity and biosynthesis. They could inhibit cell wall synthesis, induce hydrolysis and prevent bacteria from synthesizing biofilms. In addition, they can interfere with the energy metabolism of methicillin-resistant Staphylococcus aureus and disrupt the normal physiological activities of the bacteria. In vivo studies have shown that they can significantly improve wound infection and promote wound healing. CONCLUSION: Kurarinone and sophoraflavanone G showed promising antimicrobial properties against methicillin-resistant Staphylococcus aureus, suggesting that they may be potential candidates for the development of new antibiotic agents against multidrug-resistant bacteria.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Sophora , Sophora/química , Espécies Reativas de Oxigênio , Flavonoides/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Trifosfato de Adenosina/farmacologia
2.
J Agric Food Chem ; 71(42): 15593-15603, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819175

RESUMO

This study explores the protective properties and potential mechanisms of wheat-germ-derived peptide APEPEPAF (APE) against ulcerative colitis. Colitis mice induced by dextran sulfate sodium (DSS) were used as the animal model. The results showed that the APE peptide could alleviate colitis symptoms including weight loss, colon shortening, and histopathological changes. This peptide attenuated the generation of inflammatory cytokines by inhibiting the phosphorylation of protein kinase PKCζ (Thr410) and NF-κB transcriptional activity in DSS-induced mice, suggesting that APE ameliorates colitis inflammation by regulating the PKCζ/NF-κB signaling pathway. APE also preserved the barrier function of the colon by dose-dependently promoting the expression of tight junction proteins (claudin-1, zonula occluded-1, and occludin). In addition, APE significantly decreased the abundance of Bacteroides and increased the abundance of Dubosiella and Lachnospiraceae_UCG-006 to improve the intestinal flora imbalance in DSS-induced colitis mice. Therefore, wheat germ peptide APE can be used as a novel agent and dietary supplement to treat ulcerative colitis..


Assuntos
Colite Ulcerativa , Colite , Hominidae , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Triticum/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Óleos de Plantas/metabolismo , Hominidae/metabolismo , Camundongos Endogâmicos C57BL
3.
Ultrason Sonochem ; 98: 106479, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37336077

RESUMO

The effect of ultrasonic treatment on emulsifying properties of wheat germ protein (WGP) was studied in this paper. WGP was subjected to low frequency (20 kHz), high intensity ultrasonic treatment at different power (200, 400, 600, 800 W) for 10 min, or different time (2, 4, 6, 8, 10, 15, 20 min) at 400 W. The emulsifying activity index and emulsion stability index of WGP were significantly improved, and the emulsion droplet was smaller and more uniform after ultrasound treatment. Ultrasound increased the adsorbed WGP concentration at the oil-water interface and reduced the interfacial tension, which explained the improved emulsifying properties of WGP. The investigation on molecular properties and protein conformation showed that ultrasound processing increased solubility, but decreased particle size and surface charge of WGP. Ultrasound processing resulted in the unfolding of the protein molecular structure indicated by the increase of surface hydrophobicity and surface free sulfhydryl group levels, and the decrease of intrinsic fluorescence intensity. Correlation analysis showed that the changes in WGP solubility, particle size, and surface hydrophobicity were the main driven factors for the improved emulsifying properties of WGP.


Assuntos
Triticum , Ultrassom , Emulsões/química , Conformação Proteica , Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Emulsificantes/química
4.
Crit Rev Food Sci Nutr ; 63(22): 5577-5593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34964419

RESUMO

Wheat germ protein is a potential resource to produce bioactive peptides. As a cheap, safe, and healthy nutritional factor, wheat germ-derived bioactive peptides (WGBPs) provide benefits and great potential for biomedical applications. The objective of this review is to reveal the current research status of WGBPs, including their preparation methods and biological functions, such as antibacterial, anti-tumor, immune regulation, antioxidant, and anti-inflammatory properties, etc. We also reviewed the information in terms of the preventive ability of WGBPs to treat serious infectious diseases, to offer their reference to further research and application. Opinions on future research directions are also discussed. Through the review of previous research, we find that there are still some scientific issues in the basic research and industrialization process of WGBPs that deserve further exploration. Firstly, based on current complex enzymolysis, the preparation and production of WGBPs need to be combined with other advanced technology to achieve efficient and large-scale production. Secondly, studies on the bioavailability, biosafety, and mechanism against different diseases of WGBPs need to be carried out in different in vitro and in vivo models. More human experimental evidence is also required to support its industrial application as a functional food and nutritional supplement.HighlightsThe purification and identification of wheat germ-derived bioactive peptides.The main biological activities and potential mechanisms of wheat germ hydrolysates/peptides.Possible absorption and transport pathways of wheat germ hydrolysate/peptide.Wheat germ peptide shows a variety of health benefits according to its amino acid sequence.Current food applications and future perspectives of wheat germ protein hydrolysates/peptide.


Assuntos
Peptídeos , Triticum , Humanos , Triticum/química , Peptídeos/química , Sequência de Aminoácidos , Grão Comestível/química , Nutrientes
5.
FEMS Microbiol Lett ; 369(1)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36368696

RESUMO

Acute kidney injury (AKI) is a global public health hazard with high morbidity and mortality. Sepsis accounts for nearly half of all causes of AKI. Scientists have made a great effort to explore effective therapeutic agents with limited side effects in the treatment of AKI, but have had little success. With the development of gut flora study, Akkermansia muciniphila (A. muciniphila) has been proven to prevent different organs by regulating the inflammatory response. However, the reno-protective function is still unknown. Here, the AKI model was induced using lipopolysaccharide (LPS) in mice with or without pretreatment of A. muciniphila. Renal function and histological change were measured. Inflammatory factors were detected by ELISA and rt-PCR. TLR4/NF-κB signaling factors and NLRP3 inflammasome were tested by western blot and immunohistochemistry. Pretreatment of A. muciniphila markedly inhibited inflammatory response and ameliorated kidney histopathological changes. Furthermore, the TLR4, p-NF-κB p65, and downstream IκBα were notably activated in the model group and inhibited by A. muciniphila. A similar effect was found in the regulation of NLRP3 inflammasome. In conclusion, pretreatment with A. muciniphila could protect against LPS-induced AKI by inhibition of the TLR4/NF-κB pathway and NLRP3 inflammasome activation. It may be a new therapeutic strategy for AKI prevention and treatment in the future.


Assuntos
Injúria Renal Aguda , Akkermansia , NF-kappa B , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like , Akkermansia/fisiologia
6.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296544

RESUMO

With the abuse of antibiotics, bacterial antibiotic resistance is becoming a major public healthcare issue. Natural plants, especially traditional Chinese herbal medicines, which have antibacterial activity, are important sources for discovering potential bacteriostatic agents. This study aimed to develop a fast and reliable method for screening out antimicrobial compounds targeting the MRSA membrane from Psoralea corylifolia Linn. seed. A UPLC-MS/MS method was applied to identify the prenylated flavonoids in major fractions from the extracts of Psoralea corylifolia Linn. seed. The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of different fractions and compounds. The morphological and ultrastructural changes of MRSA were determined by scanning electron microscopy (SEM). The membrane-targeting mechanism of the active ingredients was explored by membrane integrity assays, membrane fluidity assays, membrane potential assays, ATP, and ROS determination. We identified eight prenylated flavonoids in Psoralea corylifolia Linn. seed. The antibacterial activity and mechanism studies showed that this type of compound has a unique destructive effect on MRSA cell membranes and does not result in drug resistance. The results revealed that prenylated flavonoids in Psoralea corylifolia Linn. seeds are promising candidates for the development of novel antibiotic agents to combat MRSA-associated infections.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Psoralea , Psoralea/química , Cromatografia Líquida , Espécies Reativas de Oxigênio/análise , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Antibacterianos/análise , Sementes/química , Anti-Infecciosos/farmacologia , Flavonoides/química , Trifosfato de Adenosina/farmacologia
7.
Phytomedicine ; 104: 154304, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35793596

RESUMO

BACKGROUND: Oxidative stress played a key role in the development of bone brittleness and is an important pathogenic factor of senile osteoporosis. A variety of animal and plant-derived peptides have been shown to have significant anti-osteoporosis effects in vivo and in vitro. PURPOSE: In this study, we aim to explore the possible mechanism of wheat germ peptide ADWGGPLPH on senile osteoporosis. STUDY DESIGN: Naturally, aged rats were used as animal models of senile osteoporosis. METHODS: Wheat germ peptide ADWGGPLPH was administered from 9-months-old to 21-months-old, and the effect of ADWGGPLPH on preventing senile osteoporosis was evaluated by measuring serum biochemical indexes, bone histomorphometry, bone biomechanics, and other indexes to elucidate the mechanism of ADWGGPLPH in delaying senile osteoporosis by detecting the expression of osteoporosis-related proteins. RESULTS: The results showed that ADWGGPLPH could effectively reduce the level of oxidative stress and improve the microstructure and bone mineral density in senile osteoporosis rats. In addition, ADWGGPLPH could improve the proliferation and differentiation activity of osteoblasts and effectively inhibit osteoclasts' differentiation by regulating the OPG/RANKL/RANK/TRAF6 pathway. CONCLUSION: ADWGGPLPH from wheat germ exhibited a notably effect on senile osteoporosis and has a high potential in the development of the nutrient regimen to against senile osteoporosis.


Assuntos
Osteoporose , Fator 6 Associado a Receptor de TNF , Animais , Densidade Óssea , Nutrientes , Osteoclastos , Osteoporose/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Triticum/metabolismo
8.
Pharm Biol ; 60(1): 785-800, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35387559

RESUMO

CONTEXT: The traditional Chinese medicine Qing'e Pills (QEP) has been used to treat postmenopausal osteoporosis (PMO). OBJECTIVE: We evaluated the regulatory effects of QEP on gut microbiota in osteoporosis. MATERIALS AND METHODS: Eighteen female SD rats were divided into three groups: sham surgery (SHAM), ovariectomized (OVX) and ovariectomized treated with QEP (OVX + QEP). Six weeks after ovariectomy, QEP was administered to OVX + QEP rats for eight weeks (4.5 g/kg/day, i.g.). After 14 weeks, the bone microstructure was evaluated. Differences in gut microbiota were analysed via 16S rRNA gene sequencing. Changes in endogenous metabolites were studied using UHPLC-Q-TOF/MS technology. GC-MS was used to detect short-chain fatty acids. Furthermore, we measured serum inflammatory factors, such as IL-6, TNF-α and IFN-γ, which may be related to gut microbiota. RESULTS: OVX + QEP exhibited increased bone mineral density (0.11 ± 0.03 vs. 0.21 ± 0.02, p< 0.001) compared to that of OVX. QEP altered the composition of gut microbiota. We identified 19 potential biomarkers related to osteoporosis. QEP inhibited the elevation of TNF-α (38.86 ± 3.19 vs. 29.43 ± 3.65, p< 0.05) and IL-6 (83.38 ± 16.92 vs. 45.26 ± 3.94, p< 0.05) levels, while it increased the concentrations of acetic acid (271.95 ± 52.41 vs. 447.73 ± 46.54, p< 0.001), propionic acid (28.96 ± 5.73 vs. 53.41 ± 14.26, p< 0.01) and butyric acid (24.92 ± 18.97 vs. 67.78 ± 35.68, p< 0.05). CONCLUSIONS: These results indicate that QEP has potential of regulating intestinal flora and improving osteoporosis. The combination of anti-osteoporosis drugs and intestinal flora could become a new treatment for osteoporosis.


Assuntos
Microbioma Gastrointestinal , Osteoporose , Animais , Densidade Óssea , Feminino , Interleucina-6 , Metabolômica , Osteoporose/tratamento farmacológico , Ovariectomia , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia
9.
Oxid Med Cell Longev ; 2022: 4289383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308170

RESUMO

Bile acids are commonly known as one of the vital metabolites derived from cholesterol. The role of bile acids in glycolipid metabolism and their mechanisms in liver and cholestatic diseases have been well studied. In addition, bile acids also serve as ligands of signal molecules such as FXR, TGR5, and S1PR2 to regulate some physiological processes in vivo. Recent studies have found that bile acids signaling may also play a critical role in the central nervous system. Evidence showed that some bile acids have exhibited neuroprotective effects in experimental animal models and clinical trials of many cognitive dysfunction-related diseases. Besides, alterations in bile acid metabolisms well as the expression of different bile acid receptors have been discovered as possible biomarkers for prognosis tools in multiple cognitive dysfunction-related diseases. This review summarizes biosynthesis and regulation of bile acids, receptor classification and characteristics, receptor agonists and signaling transduction, and recent findings in cognitive dysfunction-related diseases.


Assuntos
Ácidos e Sais Biliares , Disfunção Cognitiva , Animais , Ácidos e Sais Biliares/metabolismo , Disfunção Cognitiva/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Transdução de Sinais/fisiologia
10.
Crit Rev Food Sci Nutr ; 62(14): 3873-3897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33401950

RESUMO

Moringa oleifera Lam. is a perennial tropical deciduous tree with high economic and pharmaceutical value. As an edible plant, M. oleifera Lam. is rich in nutrients, such as proteins, amino acids, mineral elements and vitamins. Besides, it also contains an important number of bioactive phytochemicals, such as polysaccharides, flavonoids, alkaloids, glucosinolates and isothiocyanates. M. oleifera for long has been used as a natural anti-diabetic herb in India and other Asian countries. Thus, the anti-diabetic properties of Moringa plant have evolved highly attention to the researchers. In the last twenty years, a huge number of new chemical structures and their pharmacological activities have been reported in particularly the anti-diabetic properties. The current review highlighted the bioactive phytochemicals from M. Oleifera. Moreover, evidence regarding the therapeutic potential of M. oleifera for diabetes including experimental and clinical data was presented and the underlying mechanisms were revealed in order to provide insights for the development of novel drugs.


Assuntos
Diabetes Mellitus , Moringa oleifera , Antioxidantes/análise , Diabetes Mellitus/tratamento farmacológico , Humanos , Moringa oleifera/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química
11.
Food Chem X ; 12: 100141, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34704014

RESUMO

In the present study, E-nose, E-tongue, and headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology combined with Principal Component Analysis (PCA) were employed to evaluate the flavor characteristics of the volatile and the non-volatile substances generated during the enzymatic hydrolysis of the soybean meal by Alcalase. The results showed that the enzymatic hydrolysis effectively reduced the content of soybean odorous substance 1-octene-3-ol and led to better flavor. However, the excessive enzymatic hydrolysis resulted in the deterioration of the enzymatic hydrolysates flavor. In addition, both radar graph and PCA of E-tongue were able to provide the distribution of flavor substances during the enzymatic hydrolysis of the soybean meal. These results provided a theoretical basis for the improvement of the flavors of the soybean meal and its derived products.

12.
Front Pharmacol ; 12: 647529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366839

RESUMO

Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.

13.
Food Chem Toxicol ; 156: 112527, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34464636

RESUMO

Ferric citrate has been used to treat hyperphosphatemia, a prevalent symptom in patients with chronic kidney disease while ferric ammonium citrate (FAC), a more dissolvable format, is widely used as food additive. However, excess iron is associated with osteoporosis. Dietary soybean products have been shown to prevent the progression of osteoporosis. In this study, a group of peptides, referred as P3, was identified from the enzymolysis of soybean protein isolates, and its biological functions were investigated. The results showed that MC3T3-E1 cell cycle progression from G0/G1 to S phase was accelerated by P3 treatment. MC3T3-E1 cell proliferation was enhanced by P3 via ERK1/2 activation. Importantly, P3 treatment abolished the antiproliferative effect of FAC on MC3T3-E1 cell. In addition, P3 treatment increased the expression of ALP, COL-1, OCN, consequently promoting the differentiation and mineralization of MC3T3-E1 cells via activation of p38 MAPK pathway. Consequently, P3 treatment was able to reverse the inhibitory effect of FAC on osteoblasts differentiation and mineralization. Our findings suggest P3, as a dietary supplement, has a potential therapeutic function to attenuate the adverse effects of FAC on bone metabolism and to prevent osteoporosis progression.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos Férricos/toxicidade , Osteoblastos/efeitos dos fármacos , Compostos de Amônio Quaternário/toxicidade , Proteínas de Soja/farmacologia , Células 3T3 , Animais , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Mitochondrial DNA B Resour ; 6(8): 2249-2250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34286089

RESUMO

Acacia crassicarpa (Fabaceae), a nitrogen-fixing tree species, is critically important for coastal protection in southeast China. In this study, we report the complete chloroplast genome sequence of A. crassicarpa, with a length of 176,493 bp. It contains a pair of inverted repeats (IR 39,851 bp), a large single-copy region (LSC 91,869 bp), and a small single-copy region (SSC 4,922 bp). The complete genome comprises 138 genes, including 93 protein-coding genes, 37 tRNA, and 8 rRNA genes. Our phylogenetic analysis reveals that A. crassicarpa is closely related to A. podalyriifolia and A. dealbata.

15.
J Nutr Biochem ; 92: 108627, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705946

RESUMO

Previous reports have shown that plant-derived microRNAs (miRNAs) regulate mammalian gene expression through dietary intake. Our prior study found that gma-miR159a, which is abundant in soybean, significantly inhibited the proliferation of colon cancer cells. In the current study, dietary gma-miR159a was utilized to study its anti-colon cancer function in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. Under processing conditions, gma-miR159a exhibited excellent stability in cooked soybean. In vitro, gma-miR159a suppressed the expression of the oncogene MYC downstream of the Wnt signaling pathway by targeting the TCF7 gene, significantly inhibiting the growth of colon cancer cells. The in vivo experiments showed that gma-miR159a and soybean RNA (total RNA extracted from soybean) significantly reduced tumor growth in AOM/DSS-induced colon cancer mice by gavage. This effect disappeared when anti-miR159a was present. In addition, gma-miR159a and soybean RNA significantly attenuated inflammation in colon cancer mice. These results showed that long-term dietary intake of soybean-derived gma-miR159a effectively prevented the occurrence of colon cancer and colitis, which provides novel evidence for the prevention function of soybean.


Assuntos
Neoplasias do Colo/terapia , Glycine max/genética , Fator 1-alfa Nuclear de Hepatócito/genética , MicroRNAs/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , RNA de Plantas/uso terapêutico , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação para Baixo , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA de Plantas/genética
16.
Neural Plast ; 2021: 8825698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603781

RESUMO

Background: Diabetes-associated cognitive decline (DACD) is one of the nervous system dysfunctions induced by diabetes mellitus with cognitive impairment as the major symptom. In a previous preliminary proteomic study, we found that endoplasmic reticulum processing and PI3K-Akt signaling pathway might be impaired in DACD pathogenesis. In addition, growth factor receptor-bound protein 2 might be a crucial protein as a molecular target of the neuroprotective effects of ZiBuPiYin recipe (ZBPYR). Methods: In this study, 6-8 weeks aged db/db mice were treated with excipients or ZBPYR for 6 weeks. Body weight and RBG were recorded weekly. Oral glucose tolerance and insulin tolerance tests were used to assess insulin sensitivity. Morris water maze (MWM) tests were used to assess memory function. The expression of Grb2, Gab2, Akt, and GSK3ß in mouse hippocampus and cerebral cortex were analyzed by Western blotting. Results: ZBPYR not only significantly reduced RGB and improved glucose tolerance and insulin resistance, but also improved spatial cognition in DACD mice. The expression of Grb2 and Gab2 in hippocampus and cerebral cortex of db/db mice was upregulated after treated with ZBPYR, and then affected the PI3K/Akt signaling pathway, and inhibited GSK3ß overactivity. Conclusions: This study showed that ZBPYR could enhance the memory and learning ability of db/db mice. Such neuroprotective effect might be related to the activation of Grb2-PI3K/Akt signaling which might provide a novel therapeutic target for the clinical treatment of DACD.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteína Adaptadora GRB2/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Glicemia , Córtex Cerebral/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Phytomedicine ; 86: 153066, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31447278

RESUMO

BACKGROUND: Diabetic complications-coronary atherosclerosis is closely related to the increased reactive oxygen species (ROS) induced by hyperglycemia. ROS are reported to induce the abnormal proliferation of vascular smooth muscle cells (VSMCs) under high glucose conditions. Leaf and seed extracts from Moringa oleifera are found to exhibit antioxidant activity. However, few studies are evaluating the antioxidant activities of chemical compounds isolated from the M. oleifera especially in cardiovascular field. PURPOSE: The aim of this study is to explore the antioxidative effect during hyperglycemia of niazirin from M. oleifera. STUDY DESIGN: A cell model was applied. METHODS: After the taking the in vitro antioxidant experiment including ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Cell viability was carried out using high glucose-induced VSMCs model. ROS production was tested by 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. The protein kinase C zeta (PKCζ) and NADPH oxidase 4 (Nox 4) expression in vitro and in vivo were measured by western blot analysis. RESULTS: Niazirin showed good free radical scavenging activity. Niazirin significantly attenuated the proliferation of high glucose-induced VSMCs. Furthermore, it could decrease the ROS and malondialdehyde (MDA) productions, while increased total antioxidant capacity (T-AOC), superoxide dismutase (SOD) as well as glutathione peroxidase (GPx) levels in high glucose-induced VSMCs and streptozotocin-induced mice. In addition, niazirin could eliminate the high glucose-induced PKCζ activation, indicated by Thr410 phosphorylation and inhibition of the Nox4 protein expression in vitro and in vivo. CONCLUSION: Niazirin from M. oleifera exhibited notably antioxidant activities and could be utilized as a potential natural antioxidant in preventing diabetic atherosclerosis.


Assuntos
Acetonitrilas/farmacologia , Antioxidantes/farmacologia , Moringa oleifera/química , NADPH Oxidase 4/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína Quinase C/metabolismo , Acetonitrilas/isolamento & purificação , Animais , Glucose/farmacologia , Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Sementes/química , Estreptozocina/farmacologia , Superóxido Dismutase/metabolismo
18.
Food Funct ; 11(8): 6843-6854, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32662486

RESUMO

This study explores the antioxidative effect of a specific wheat germ-derived peptide on high glucose-induced oxidative stress in vascular smooth muscle cells (VSMCs) and the underlying mechanisms. The peptide ADWGGPLPH was identified by LC-MS/MS. The effects of this peptide on the production of ROS and the expression of oxidative stress signaling proteins in VSMCs were determined. STZ-induced mice were utilized to confirm the anti-oxidative and anti-diabetic cardiovascular disease effects of this peptide in vivo. The results showed that ADWGGPLPH significantly prevented high glucose-induced cell proliferation, decreased intracellular ROS generation, stimulated AMPK activity, inhibited the PKCζ, AKT and Erk1/2 phosphorylation, and suppressed NOX4 protein expression. In addition, ADWGGPLPH enhanced the antioxidant abilities and attenuated inflammatory cytokine generation in STZ-induced diabetic mice. Therefore, ADWGGPLPH prevents high glucose-induced oxidative stress in VSMCs by modulating the PKCζ/AMPK/NOX4 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , NADPH Oxidase 4/genética , Estresse Oxidativo , Peptídeos/farmacologia , Proteína Quinase C/genética , Triticum/química , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 4/metabolismo , Peptídeos/análise , Fosforilação , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem
19.
Genomics ; 112(5): 2949-2958, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32407773

RESUMO

MicroRNAs (miRNAs) are important regulators of gene expression in eukaryotes. Studies have shown that plant-derived miRNAs can be absorbed through diets and regulate gene expression in mammals. Although soybean-derived miRNAs have been reported, their biological functions are still unclear. In this study, we found that soybean-derived small RNAs (sRNAs) significantly inhibited the proliferation and stimulated the apoptosis of Caco-2 cells. Bioinformatics analysis indicated that the target gene set of soybean miRNAs was extensively enriched in cancer pathways. Besides, we obtained 8 target genes, including Transcription factor 7 (TCF7), associated with colon cancer through prediction. Further studies showed that gma-miR159a inhibited the proliferation of Caco-2 cells and played an important role in the inhibitory effect of sRNAs by inhibiting TCF7 protein, which are upregulated in colon cancer cells but not normal mucosal cells in culture. These findings provide a novel molecular mechanism of soybean-derived miRNAs for potential application in tumor prevention.


Assuntos
Neoplasias do Colo/genética , Glycine max/genética , MicroRNAs/fisiologia , RNA de Plantas/fisiologia , Apoptose , Células CACO-2 , Linhagem Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Humanos , Mucosa Intestinal/citologia , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo
20.
Food Chem ; 311: 125948, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31877545

RESUMO

The increasing incidence of metabolic syndrome requires more functional food products with low cost and excellent effects to assist treatment. The crude extract of Moringa oleifera Lam. showed excellent hypoglycemic activity. The current study was designed to investigate the effects and mechanism of niazirin, a bioactive component from Moringa oleifera Lam. seed, on diabetic metabolic syndrome. C57BL/6J mice were treated daily with 5 mL/kg/body weight (BW) of saline, while db/db mice were similarly treated with 5 mL/kg/BW of saline, 10 and 20 mg/kg/BW of niazirin, respectively. Results indicated that niazirin could significantly reduce body weight, water and food intake, improve hyperglycemia, insulin resistance, inflammation, carbohydrate and lipid metabolism, non-alcoholic fatty liver. Furthermore, niazirin improved the hepatic energy metabolism via AMPK signaling pathway. Our study provides an evidence of an edible plant product, niazirin, may help in the treatment of metabolic syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/tratamento farmacológico , Glicosídeos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Moringa oleifera/química , Fenóis/administração & dosagem , Extratos Vegetais/administração & dosagem , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA