Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(4): e0123222, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920211

RESUMO

Here, we report the genome assemblies of 11 endophytic bacteria, isolated from poison ivy vine (Toxicodendron radicans). Five species belonging to the genus Pseudomonas, two species of Curtobacterium, one strain of Pantoea agglomerans, and one species from the Bacillus, Cellulomonas, and Enterobacter genera were isolated from the interior tissue of poison ivy.

2.
PLoS One ; 17(1): e0262370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025928

RESUMO

Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 µg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.


Assuntos
Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Neisseria/genética , Antibacterianos/farmacologia , Azitromicina/farmacologia , Testes de Sensibilidade Microbiana , Microbiota/genética , Inibidores da Síntese de Proteínas , RNA Ribossômico 23S/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/genética , Ribossomos/genética , Deleção de Sequência/genética
3.
BMC Res Notes ; 14(1): 175, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964980

RESUMO

OBJECTIVES: To characterize the bacterial community of Wind Cave's Madison aquifer through whole-genome sequencing, and to better understand the bacterial ecology by identifying genes involved in acyl-homoserine lactone (AHL) based quorum-sensing (QS) systems. RESULTS: Genome-based taxonomic classification revealed the microbial richness present in the pristine Madison aquifer. The strains were found to span eleven genera and fourteen species, of which eight had uncertain taxonomic classifications. The genomes of strains SD129 and SD340 were found to contain the archetypical AHL QS system composed of two genes, luxI and luxR. Surprisingly, the genomes of strains SD115, SD129, SD274 and SD316 were found to contain one to three luxR orphans (solos). Strain SD129, besides possessing an archetypical AHL QS luxI-luxR pair, also contained two luxR solos, while strain SD316 contained three LuxR solos and no luxI-luxR pairs. The ligand-binding domain of two LuxR solos, one each from strains SD129 and SD316, were found to contain novel substitutions not previously reported, thus may represent two LuxR orphans that detection and response to unknown self-produced signal(s), or to signal(s) produced by other organisms.


Assuntos
Água Subterrânea , Transativadores , Bactérias/genética , Proteínas de Bactérias/genética , Genômica , Proteínas Repressoras
4.
Microorganisms ; 8(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212916

RESUMO

Antimicrobial resistance (AMR) is one of the biggest challenges of the 21st century, and biofilm formation enables bacteria to resist antibiotic at much higher concentrations than planktonic cells. Earlier, we showed that the Gram-negative Aeromonas hydrophila RIT668 and Citrobacter portucalensis RIT669 (closely related to C. freundii NBRC 12681) from infected spotted turtles (Clemmys guttata), formed biofilms and upregulated toxin expression on plastic surfaces, and were predicted to possess multiple antibiotic resistance genes. Here, we show that they each resist several antibiotics in the planktonic phase, but were susceptible to neomycin, and high concentrations of tetracycline and cotrimoxazole. The susceptibility of their biofilms to neomycin and cotrimoxazole was tested using the Calgary device. For A. hydrophila, the minimum inhibitory concentration (MIC) = 500-1000, and the minimum biofilm eradication concentration (MBEC) > 1000 µg/mL, using cotrimoxazole, and MIC = 32.3-62.5, and MBEC > 1000 µg/mL, using neomycin. For C. freundii MIC = 7.8-15.6, and, MBEC > 1000 µg/mL, using cotrimoxazole, and MIC = 7.8, and MBEC > 1000 µg/mL, using neomycin. Both A. hydrophila and C. portucalensis activated an acyl homoserine lactone (AHL) dependent biosensor, suggesting that quorum sensing could mediate biofilm formation. Their multidrug resistance in the planktonic form, and weak biofilm eradication even with neomycin and cotrimoxazole, indicate that A. hydrophila and C. portucalensis are potential zoonotic pathogens, with risks for patients living with implants.

5.
Microbiol Resour Announc ; 8(40)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582457

RESUMO

Genomic resources remain scarce for bacteria isolated from oligotrophic caves. We sequenced the genomes of five Proteobacteria isolated from Lechuguilla Cave in New Mexico. Genome-based phylogeny indicates that each strain belongs to a distinct genus. Two Rhizobiaceae isolates possess genomic potential for the biosynthesis of acyl-homoserine lactone.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30533762

RESUMO

Exiguobacterium sp. RIT 452 is of biotechnological importance given its potential for antibiotic production. Bactericidal activity was detected using spent medium extract in a disk diffusion assay against Escherichia coli. The genome consists of 3,246 protein-coding sequences, including a variety of gene clusters involved in the synthesis of antibacterial compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA