Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(2): 359-374.e8, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199006

RESUMO

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Assuntos
Ataxia de Friedreich , Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Microscopia Crioeletrônica , Frataxina , Biossíntese de Proteínas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ataxia de Friedreich/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
2.
Blood Adv ; 3(14): 2199-2204, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31324640

RESUMO

Immune evasion is a hallmark of cancer and a central mechanism underlying acquired resistance to immune therapy. In allogeneic hematopoietic cell transplantation (alloHCT), late relapses can arise after prolonged alloreactive T-cell control, but the molecular mechanisms of immune escape remain unclear. To identify mechanisms of immune evasion, we performed a genetic analysis of serial samples from 25 patients with myeloid malignancies who relapsed ≥1 year after alloHCT. Using targeted sequencing and microarray analysis to determine HLA allele-specific copy number, we identified copy-neutral loss of heterozygosity events and focal deletions spanning class 1 HLA genes in 2 of 12 recipients of matched unrelated-donor HCT and in 1 of 4 recipients of mismatched unrelated-donor HCT. Relapsed clones, although highly related to their antecedent pretransplantation malignancies, frequently acquired additional mutations in transcription factors and mitogenic signaling genes. Previously, the study of relapse after haploidentical HCT established the paradigm of immune evasion via loss of mismatched HLA. Here, in the context of matched unrelated-donor HCT, HLA loss provides genetic evidence that allogeneic immune recognition may be mediated by minor histocompatibility antigens and suggests opportunities for novel immunologic approaches for relapse prevention.


Assuntos
Deleção de Genes , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Alelos , Biomarcadores , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia Mieloide Aguda/terapia , Mutação , Polimorfismo de Nucleotídeo Único , Recidiva , Transplante Homólogo
3.
Cell Cycle ; 14(16): 2571-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039820

RESUMO

The hostile tumor microenvironment results in the generation of intracellular stresses including hypoxia and nutrient deprivation. In order to adapt to such conditions, the cell utilizes several stress-response mechanisms, including the attenuation of protein synthesis, the inhibition of cellular proliferation, and induction of autophagy. Autophagy leads to the degradation of cellular contents, including damaged organelles and mutant proteins, which the cell can then use as an alternate energy source. Two integral changes to the signaling milieu to promote such a response include inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and phosphorylation of eIF2α. This review will describe how conditions found in the tumor microenvironment regulate mTORC1 as well as eIF2α, the downstream impact of these modifications, and the implications in tumorigenesis. We will then discuss the remarkable similarities and overlapping function of these 2 signaling pathways, focusing on the response to amino acid deprivation, and present a new model involving crosstalk between them based on our recent work.


Assuntos
Fator de Iniciação 2 em Eucariotos/fisiologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adaptação Fisiológica , Autofagia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosforilação , Processamento de Proteína Pós-Traducional , Receptor Cross-Talk , Transdução de Sinais , Resposta a Proteínas não Dobradas
4.
J Nucl Med ; 51(7): 1092-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20554721

RESUMO

UNLABELLED: Deoxycytidine kinase (dCK) is a rate-limiting enzyme in the deoxyribonucleoside salvage pathway and a critical determinant of therapeutic activity for several nucleoside analog prodrugs. We have previously reported the development of 1-(2'-deoxy-2'-(18)F-fluoro-beta-D-arabinofuranosyl)cytosine ((18)F-FAC), a new probe for PET of dCK activity in immune disorders and certain cancers. The objective of the current study was to develop PET probes with improved metabolic stability and specificity for dCK. Toward this goal, several candidate PET probes were synthesized and evaluated in vitro and in vivo. METHODS: High-pressure liquid chromatography was used to analyze the metabolic stability of (18)F-FAC and several newly synthesized analogs with the natural D-enantiomeric sugar configuration or the corresponding unnatural L-configuration. In vitro kinase and uptake assays were used to determine the affinity of the (18)F-FAC L-nucleoside analogs for dCK. The biodistribution of selected L-analogs in mice was determined by small-animal PET/CT. RESULTS: Candidate PET probes were selected using the following criteria: low susceptibility to deamination, high affinity for purified recombinant dCK, high uptake in dCK-expressing cell lines, and biodistribution in mice reflective of the tissue-expression pattern of dCK. Among the 10 newly developed candidate probes, 1-(2'-deoxy-2'-(18)F-fluoro-beta-L-arabinofuranosyl)cytosine (L-(18)F-FAC) and 1-(2'-deoxy-2'-(18)F-fluoro-beta-L-arabinofuranosyl)-5-methylcytosine (L-(18)F-FMAC) most closely matched the selection criteria. The selection of L-(18)F-FAC and L-(18)F-FMAC was validated by showing that these two PET probes could be used to image animal models of leukemia and autoimmunity. CONCLUSION: Promising in vitro and in vivo data warrant biodistribution and dosimetry studies of L-(18)F-FAC and L-(18)F-FMAC in humans.


Assuntos
Desoxicitidina Quinase/metabolismo , Compostos Radiofarmacêuticos , Nucleotídeos de Adenina , Animais , Arabinonucleosídeos , Ligação Competitiva , Biotransformação , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Clofarabina , Humanos , L-Lactato Desidrogenase/metabolismo , Transtornos Linfoproliferativos/diagnóstico por imagem , Camundongos , Fosforilação , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Proteínas Recombinantes , Especificidade por Substrato , Tomografia Computadorizada de Emissão , Imagem Corporal Total
5.
Nature ; 446(7138): 926-9, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-17361132

RESUMO

The human and mouse genomes share a number of long, perfectly conserved nucleotide sequences, termed ultraconserved elements. Whereas these regions can act as transcriptional enhancers when upstream of genes, those within genes are less well understood. In particular, the function of ultraconserved elements that overlap alternatively spliced exons of genes encoding RNA-binding proteins is unknown. Here we report that in every member of the human SR family of splicing regulators, highly or ultraconserved elements are alternatively spliced, either as alternative 'poison cassette exons' containing early in-frame stop codons, or as alternative introns in the 3' untranslated region. These alternative splicing events target the resulting messenger RNAs for degradation by means of an RNA surveillance pathway called nonsense-mediated mRNA decay. Mouse orthologues of the human SR proteins exhibit the same unproductive splicing patterns. Three SR proteins have been previously shown to direct splicing of their own transcripts, and one of these is known to autoregulate its expression by coupling alternative splicing with decay; our results suggest that unproductive splicing is important for regulation of the entire SR family. We find that unproductive splicing associated with conserved regions has arisen independently in different SR genes, suggesting that splicing factors may readily acquire this form of regulation.


Assuntos
Processamento Alternativo/genética , Sequência Conservada/genética , DNA/genética , Proteínas de Ligação a RNA/genética , Animais , Éxons/genética , Humanos , Íntrons/genética , Camundongos , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA