Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 6(6): e04070, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613099

RESUMO

Surface disinfectants are regularly used in prophylactic and infection control measures. Concern has been raised whether residues of sub-inhibitory disinfectant concentrations may constitute a selective pressure and could contribute to the development of strains which are tolerant and/or resistant to biocides including antibiotics. The current study investigated whether Staphylococcus (S.) aureus ATCC® 29213™ and ATCC® 6538™ would change their growth characteristics and antimicrobial susceptibility profiles after prolonged treatment with sub-inhibitory concentrations of sodium hypochlorite (NaOCl). NaOCl is a fast-acting disinfectant with a broad-spectrum activity, inexpensive and widely used in healthcare and the food production industry. Minimum inhibitory concentration (MIC) for NaOCl was determined by broth macrodilution according to the guidelines for disinfectant efficacy testing provided by the German Veterinary Medical Society. Serial passages after 24 h and 72 h, respectively, in defined sub-inhibitory concentrations of NaOCl resulted in a number of phenotypic variants. Two of these variants, derived from S. aureus ATCC® 29213™, showed elevated MICs of oxacillin and were considered as in vitro-generated borderline oxacillin-resistant S. aureus (BORSA). Transmission electron microscopy revealed a significantly thickened cell wall in these isolates, a phenomenon that has also been described for Listeria monocytogenes after low-level exposure to NaOCl. Whole genome sequencing revealed an early stop codon in the gene coding for the GdpP protein and thereby abolishing the function of this gene. GdpP represents a phosphodiesterase that regulates gene expression, and loss of function of the GdpP protein has been described in association with borderline oxacillin resistance. Our findings suggest that a mutation in the GdpP protein gene and morphological changes of the cell wall were induced by repeated exposure to sub-lethal NaOCl concentrations, and most likely accounted for a BORSA phenotype in two variants derived from S. aureus ATCC® 29213™.

2.
PLoS One ; 13(3): e0194641, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558482

RESUMO

Biosecurity is defined as the implementation of measures that reduce the risk of disease agents being introduced and/or spread. For pig production, several of these measures are routinely implemented (e.g. cleaning, disinfection, segregation). However, air as a potential vector of pathogens has long been disregarded. Filters for incoming and recirculating air were installed into an already existing ventilation plant at a fattening piggery (3,840 pigs at maximum) in Saxony, Germany. Over a period of three consecutive fattening periods, we evaluated various parameters including air quality indices, environmental and operating parameters, and pig performance. Animal data regarding respiratory diseases, presence of antibodies against influenza A viruses, PRRSV, and Actinobacillus pleuropneumoniae and lung health score at slaughter were recorded, additionally. There were no significant differences (p = 0.824) in total bacterial counts between barns with and without air filtration. Recirculating air filtration resulted in the lowest total dust concentration (0.12 mg/m3) and lung health was best in animals from the barn equipped with recirculating air filtration modules. However, there was no difference in animal performance. Antibodies against all above mentioned pathogens were detected but mostly animals were already antibody-positive at re-stocking. We demonstrated that supply air filtration as well as recirculating air filtration technique can easily be implemented in an already existing ventilation system and that recirculating air filtration resulted in enhanced lung health compared to supply air-filtered and non-filtered barns. A more prominent effect might have been obtained in a breeding facility because of the longer life span of sows and a higher biosecurity level with air filtration as an add-on measure.


Assuntos
Adiposidade , Filtros de Ar , Poluição do Ar , Criação de Animais Domésticos/métodos , Suínos/metabolismo , Ventilação/métodos , Adiposidade/fisiologia , Filtros de Ar/veterinária , Filtros de Ar/virologia , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Bem-Estar do Animal/normas , Animais , Animais Domésticos , Comércio , Ambiente Controlado , Fazendas , Filtração/métodos , Filtração/veterinária , Suínos/microbiologia , Suínos/virologia , Ventilação/instrumentação
3.
PLoS One ; 12(10): e0186558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29028843

RESUMO

Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs.


Assuntos
Filtros de Ar/microbiologia , Microbiologia do Ar , Laboratórios , Suínos , Animais , Bactérias/isolamento & purificação , Cinética , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA