Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 141: 106615, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520778

RESUMO

The radiation of Palearctic green toads (Bufotes) holds great potential to evaluate the role of hybridization in phylogeography at multiple stages along the speciation continuum. With fifteen species representing three ploidy levels, this model system is particularly attractive to examine the causes and consequences of allopolyploidization, a prevalent yet enigmatic pathway towards hybrid speciation. Despite substantial efforts, the evolutionary history of this species complex remains largely blurred by the lack of consistency among the corresponding literature. To get a fresh, comprehensive view on Bufotes phylogeography, here we combined genome-wide multilocus analyses (RAD-seq) with an extensive compilation of mitochondrial, genome size, niche modelling, distribution and phenotypic (bioacoustics, morphometrics, toxin composition) datasets, representing hundreds of populations throughout Eurasia. We provide a fully resolved nuclear phylogeny for Bufotes and highlight exceptional cyto-nuclear discordances characteristic of complete mtDNA replacement (in 20% of species), mitochondrial surfing during post-glacial expansions, and the formation of homoploid hybrid populations. Moreover, we traced the origin of several allopolyploids down to species level, showing that all were exclusively fathered by the West Himalayan B. latastii but mothered by several diploid forms inhabiting Central Asian lowlands, an asymmetry consistent with hypotheses on mate choice and Dobzhansky-Muller incompatibilities. Their intermediate call phenotypes potentially allowed for rapid reproductive isolation, while toxin compositions converged towards the ecologically-closest parent. Across the radiation, we pinpoint a stepwise progression of reproductive isolation through time, with a threshold below which hybridizability is irrespective of divergence (<6My), above which species barely admix and eventually evolve different mating calls (6-10My), or can successfully cross-breed through allopolyploidization (>15My). Finally, we clarified the taxonomy of Bufotes (including genetic analyses of type series) and formally described two new species, B. cypriensis sp. nov. (endemic to Cyprus) and B. perrini sp. nov. (endemic to Central Asia). Embracing the genomic age, our framework marks the advent of a new exciting era for evolutionary research in these iconic amphibians.


Assuntos
Evolução Biológica , Bufonidae/fisiologia , Animais , Bufonidae/classificação , Bufonidae/genética , DNA Mitocondrial/genética , Especiação Genética , Tamanho do Genoma , Genoma Mitocondrial , Genômica , Hibridização Genética , Mitocôndrias/genética , Fenótipo , Filogenia , Filogeografia , Análise de Componente Principal , Fatores de Tempo
2.
Mol Ecol Resour ; 14(3): 636-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24345231

RESUMO

The house sparrow (Passer domesticus) is an important model species in ecology and evolution. However, until recently, genomic resources for molecular ecological projects have been lacking in this species. Here, we present transcriptome sequencing data (RNA-Seq) from three different house sparrow tissues (spleen, blood and bursa). These tissues were specifically chosen to obtain a diverse representation of expressed genes and to maximize the yield of immune-related gene functions. After de novo assembly, 15,250 contigs were identified, representing sequence data from a total of 8756 known avian genes (as inferred from the closely related zebra finch). The transcriptome assembly contain sequence data from nine manually annotated MHC genes, including an almost complete MHC class I coding sequence. There were 407, 303 and 68 genes overexpressed in spleen, blood and bursa, respectively. Gene ontology terms related to ribosomal function were associated with overexpression in spleen and oxygen transport functions with overexpression in blood. In addition to the transcript sequences, we provide 327 gene-linked microsatellites (SSRs) with sufficient flanking sequences for primer design, and 3177 single-nucleotide polymorphisms (SNPs) within genes, that can be used in follow-up molecular ecology studies of this ecological well-studied species.


Assuntos
Pardais/genética , Transcriptoma , Animais , Proteínas Aviárias/genética , Ecologia , Antígenos de Histocompatibilidade/genética , Imunogenética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Pardais/classificação , Pardais/imunologia
3.
PLoS One ; 8(5): e62707, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23723970

RESUMO

Sweet potato (Ipomoea batatas (L.) Lam., Convolvulaceae) counts among the most widely cultivated staple crops worldwide, yet the origins of its domestication remain unclear. This hexaploid species could have had either an autopolyploid origin, from the diploid I. trifida, or an allopolyploid origin, involving genomes of I. trifida and I. triloba. We generated molecular genetic data for a broad sample of cultivated sweet potatoes and its diploid and polyploid wild relatives, for noncoding chloroplast and nuclear ITS sequences, and nuclear SSRs. Our data did not support an allopolyploid origin for I. batatas, nor any contribution of I. triloba in the genome of domesticated sweet potato. I. trifida and I. batatas are closely related although they do not share haplotypes. Our data support an autopolyploid origin of sweet potato from the ancestor it shares with I. trifida, which might be similar to currently observed tetraploid wild Ipomoea accessions. Two I. batatas chloroplast lineages were identified. They show more divergence with each other than either does with I. trifida. We thus propose that cultivated I. batatas have multiple origins, and evolved from at least two distinct autopolyploidization events in polymorphic wild populations of a single progenitor species. Secondary contact between sweet potatoes domesticated in Central America and in South America, from differentiated wild I. batatas populations, would have led to the introgression of chloroplast haplotypes of each lineage into nuclear backgrounds of the other, and to a reduced divergence between nuclear gene pools as compared with chloroplast haplotypes.


Assuntos
Genes de Plantas , Ipomoea batatas/genética , Sequência de Bases , Cloroplastos/genética , Colômbia , Produtos Agrícolas/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Equador , Evolução Molecular , Especiação Genética , Variação Genética , Genoma de Planta , Guatemala , Haplótipos , México , Repetições de Microssatélites , Tipagem de Sequências Multilocus , Filogenia , Filogeografia , Folhas de Planta/genética , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA