Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645170

RESUMO

The fetal genetic program orchestrates cardiac development and the re-expression of fetal genes is thought to underlie cardiac disease and adaptation. Here, a proteomics ratio test using mass spectrometry is applied to find protein isoforms with statistically significant usage differences in the fetal vs. postnatal mouse heart. Changes in isoform usage ratios are pervasive at the protein level, with 104 significant events observed, including 88 paralog-derived isoform switching events and 16 splicing-derived isoform switching events between fetal and postnatal hearts. The ratiometric proteomic comparisons rediscovered hallmark fetal gene signatures including a postnatal switch from fetal ß (MYH7) toward ɑ (MYH6) myosin heavy chains and from slow skeletal muscle (TNNI1) toward cardiac (TNNI3) troponin I. Altered usages in metabolic proteins are prominent, including a platelet to muscle phosphofructokinase (PFKP - PFKM), enolase 1 to 3 (ENO1 - ENO3), and alternative splicing of pyruvate kinase M2 toward M1 (PKM2 - PKM1) isoforms in glycolysis. The data also revealed a parallel change in mitochondrial proteins in cardiac development, suggesting the shift toward aerobic respiration involves also a remodeling of the mitochondrial protein isoform proportion. Finally, a number of glycolytic protein isoforms revert toward their fetal forms in adult hearts under pathological cardiac hypertrophy, suggesting their functional roles in adaptive or maladaptive response, but this reversal is partial. In summary, this work presents a catalog of ratiometric protein markers of the fetal genetic program of the mouse heart, including previously unreported splice isoform markers.

2.
Am J Physiol Heart Circ Physiol ; 323(3): H538-H558, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930447

RESUMO

The risks of heart diseases are significantly modulated by age and sex, but how these factors influence baseline cardiac gene expression remains incompletely understood. Here, we used RNA sequencing and mass spectrometry to compare gene expression in female and male young adult (4 mo) and early aging (20 mo) mouse hearts, identifying thousands of age- and sex-dependent gene expression signatures. Sexually dimorphic cardiac genes are broadly distributed, functioning in mitochondrial metabolism, translation, and other processes. In parallel, we found over 800 genes with differential aging response between male and female, including genes in cAMP and PKA signaling. Analysis of the sex-adjusted aging cardiac transcriptome revealed a widespread remodeling of exon usage patterns that is largely independent from differential gene expression, concomitant with upstream changes in RNA-binding protein and splice factor transcripts. To evaluate the impact of the splicing events on cardiac proteoform composition, we applied an RNA-guided proteomics computational pipeline to analyze the mass spectrometry data and detected hundreds of putative splice variant proteins that have the potential to rewire the cardiac proteome. Taken together, the results here suggest that cardiac aging is associated with 1) widespread sex-biased aging genes and 2) a rewiring of RNA splicing programs, including sex- and age-dependent changes in exon usages and splice patterns that have the potential to influence cardiac protein structure and function. These changes contribute to the emerging evidence for considerable sexual dimorphism in the cardiac aging process that should be considered in the search for disease mechanisms.NEW & NOTEWORTHY Han et al. used proteogenomics to compare male and female mouse hearts at 4 and 20 mo. Sex-biased cardiac genes function in mitochondrial metabolism, translation, autophagy, and other processes. Hundreds of cardiac genes show sex-by-age interactions, that is, sex-biased aging genes. Cardiac aging is accompanied with a remodeling of exon usage in functionally coordinated genes, concomitant with differential expression of RNA-binding proteins and splice factors. These features represent an underinvestigated aspect of cardiac aging that may be relevant to the search for disease mechanisms.


Assuntos
Proteogenômica , Envelhecimento/genética , Processamento Alternativo , Animais , Feminino , Masculino , Camundongos , Proteogenômica/métodos , Splicing de RNA , Proteínas de Ligação a RNA/genética
3.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575093

RESUMO

Passive stiffness of the heart is determined largely by extracellular matrix and titin, which functions as a molecular spring within sarcomeres. Titin stiffening is associated with the development of diastolic dysfunction (DD), while augmented titin compliance appears to impair systolic performance in dilated cardiomyopathy. We found that myofibril stiffness was elevated in mice lacking histone deacetylase 6 (HDAC6). Cultured adult murine ventricular myocytes treated with a selective HDAC6 inhibitor also exhibited increased myofibril stiffness. Conversely, HDAC6 overexpression in cardiomyocytes led to decreased myofibril stiffness, as did ex vivo treatment of mouse, rat, and human myofibrils with recombinant HDAC6. Modulation of myofibril stiffness by HDAC6 was dependent on 282 amino acids encompassing a portion of the PEVK element of titin. HDAC6 colocalized with Z-disks, and proteomics analysis suggested that HDAC6 functions as a sarcomeric protein deacetylase. Finally, increased myofibril stiffness in HDAC6-deficient mice was associated with exacerbated DD in response to hypertension or aging. These findings define a role for a deacetylase in the control of myofibril function and myocardial passive stiffness, suggest that reversible acetylation alters titin compliance, and reveal the potential of targeting HDAC6 to manipulate the elastic properties of the heart to treat cardiac diseases.


Assuntos
Miofibrilas , Sarcômeros , Animais , Conectina/química , Conectina/genética , Conectina/metabolismo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Humanos , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Ratos , Sarcômeros/metabolismo
4.
Sci Rep ; 12(1): 643, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022484

RESUMO

Acute kidney injury (AKI) is common in patients, causes systemic sequelae, and predisposes patients to long-term cardiovascular disease. To date, studies of the effects of AKI on cardiovascular outcomes have only been performed in male mice. We recently demonstrated that male mice developed diastolic dysfunction, hypertension and reduced cardiac ATP levels versus sham 1 year after AKI. The effects of female sex on long-term cardiac outcomes after AKI are unknown. Therefore, we examined the 1-year cardiorenal outcomes following a single episode of bilateral renal ischemia-reperfusion injury in female C57BL/6 mice using a model with similar severity of AKI and performed concomitantly to recently published male cohorts. To match the severity of AKI between male and female mice, females received 34 min of ischemia time compared to 25 min in males. Serial renal function, echocardiograms and blood pressure assessments were performed throughout the 1-year study. Renal histology, and cardiac and plasma metabolomics and mitochondrial function in the heart and kidney were evaluated at 1 year. Measured glomerular filtration rates (GFR) were similar between male and female mice throughout the 1-year study period. One year after AKI, female mice had preserved diastolic function, normal blood pressure, and preserved levels of cardiac ATP. Compared to males, females demonstrated pathway enrichment in arginine metabolism and amino acid related energy production in both the heart and plasma, and glutathione in the plasma. Cardiac mitochondrial respiration in Complex I of the electron transport chain demonstrated improved mitochondrial function in females compared to males, regardless of AKI or sham. This is the first study to examine the long-term cardiac effects of AKI on female mice and indicate that there are important sex-related cardiorenal differences. The role of female sex in cardiovascular outcomes after AKI merits further investigation.


Assuntos
Injúria Renal Aguda
5.
J Vis Exp ; (176)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34779440

RESUMO

Mass spectrometry-based shotgun proteomics experiments require multiple sample preparation steps, including enzymatic protein digestion and clean-up, which can take up significant person-hours of bench labor and present a source of batch-to-batch variability. Lab automation with pipetting robots can reduce manual work, maximize throughput, and increase research reproducibility. Still, the steep starting prices of standard automation stations make them unaffordable for many academic laboratories. This article describes a proteomics sample preparation workflow using an affordable, open-source automation system (The Opentrons OT-2), including instructions for setting up semi-automated protein reduction, alkylation, digestion, and clean-up steps; as well as accompanying open-source Python scripts to program the OT-2 system through its application programming interface.


Assuntos
Proteômica , Robótica , Automação , Humanos , Laboratórios , Reprodutibilidade dos Testes , Manejo de Espécimes
6.
Am J Physiol Heart Circ Physiol ; 321(2): H382-H389, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142888

RESUMO

Pulmonary hypertension (PH) is associated with structural remodeling of pulmonary arteries (PAs) because of excessive proliferation of fibroblasts, endothelial cells, and smooth muscle cells (SMCs). The peptide hormone angiotensin II (ANG II) contributes to pulmonary vascular remodeling, in part, through its ability to trigger extracellular signal-regulated kinase (ERK1/2) activation. Here, we demonstrate that the ERK1/2 phosphatase, dual-specificity phosphatase 5 (DUSP5), functions as a negative regulator of ANG II-mediated SMC proliferation and PH. In contrast to wild-type controls, Dusp5 null mice infused with ANG II developed PH and right ventricular (RV) hypertrophy. PH in Dusp5 null mice was associated with thickening of the medial layer of small PAs, suggesting an in vivo role for DUSP5 as a negative regulator of ANG II-dependent SMC proliferation. Consistent with this, overexpression of DUSP5 blocked ANG II-mediated proliferation of cultured human pulmonary artery SMCs (hPASMCs) derived from patients with idiopathic PH or from failed donor controls. Collectively, the data support a role for DUSP5 as a feedback inhibitor of ANG II-mediated ERK signaling and PASMC proliferation and suggest that disruption of this circuit leads to adverse cardiopulmonary remodeling.NEW & NOTEWORTHY Dual-specificity phosphatases (DUSPs) serve critical roles in the regulation of mitogen-activated protein kinases, but their functions in the cardiovascular system remain poorly defined. Here, we provide evidence that DUSP5, which resides in the nucleus and specifically dephosphorylates extracellular signal-regulated kinase (ERK1/2), blocks pulmonary vascular smooth muscle cell proliferation. In response to angiotensin II infusion, mice lacking DUSP5 develop pulmonary hypertension and right ventricular cardiac hypertrophy. These findings illustrate DUSP5-mediated suppression of ERK signaling in the lungs as a protective mechanism.


Assuntos
Proliferação de Células/genética , Fosfatases de Especificidade Dupla/genética , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/genética , Hipertrofia Ventricular Direita/genética , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular/genética , Angiotensina II/farmacologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/fisiopatologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Vasoconstritores/farmacologia
7.
JACC Basic Transl Sci ; 6(2): 119-133, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33665513

RESUMO

Growing epidemiological data demonstrate that acute kidney injury (AKI) is associated with long-term cardiovascular morbidity and mortality. Here, the authors present a 1-year study of cardiorenal outcomes following bilateral ischemia-reperfusion injury in male mice. These data suggest that AKI causes long-term dysfunction in the cardiac metabolome, which is associated with diastolic dysfunction and hypertension. Mice treated with the histone deacetylase inhibitor, ITF2357, had preservation of cardiac function and remained normotensive throughout the study. ITF2357 did not protect against the development of kidney fibrosis after AKI.

8.
Circulation ; 143(19): 1874-1890, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33682427

RESUMO

BACKGROUND: Diastolic dysfunction (DD) is associated with the development of heart failure and contributes to the pathogenesis of other cardiac maladies, including atrial fibrillation. Inhibition of histone deacetylases (HDACs) has been shown to prevent DD by enhancing myofibril relaxation. We addressed the therapeutic potential of HDAC inhibition in a model of established DD with preserved ejection fraction. METHODS: Four weeks after uninephrectomy and implantation with deoxycorticosterone acetate pellets, when DD was clearly evident, 1 cohort of mice was administered the clinical-stage HDAC inhibitor ITF2357/Givinostat. Echocardiography, blood pressure measurements, and end point invasive hemodynamic analyses were performed. Myofibril mechanics and intact cardiomyocyte relaxation were assessed ex vivo. Cardiac fibrosis was evaluated by picrosirius red staining and second harmonic generation microscopy of left ventricle (LV) sections, RNA sequencing of LV mRNA, mass spectrometry-based evaluation of decellularized LV biopsies, and atomic force microscopy determination of LV stiffness. Mechanistic studies were performed with primary rat and human cardiac fibroblasts. RESULTS: HDAC inhibition normalized DD without lowering blood pressure in this model of systemic hypertension. In contrast to previous models, myofibril relaxation was unimpaired in uninephrectomy/deoxycorticosterone acetate mice. Furthermore, cardiac fibrosis was not evident in any mouse cohort on the basis of picrosirius red staining or second harmonic generation microscopy. However, mass spectrometry revealed induction in the expression of >100 extracellular matrix proteins in LVs of uninephrectomy/deoxycorticosterone acetate mice, which correlated with profound tissue stiffening based on atomic force microscopy. ITF2357/Givinostat treatment blocked extracellular matrix expansion and LV stiffening. The HDAC inhibitor was subsequently shown to suppress cardiac fibroblast activation, at least in part, by blunting recruitment of the profibrotic chromatin reader protein BRD4 (bromodomain-containing protein 4) to key gene regulatory elements. CONCLUSIONS: These findings demonstrate the potential of HDAC inhibition as a therapeutic intervention to reverse existing DD and establish blockade of extracellular matrix remodeling as a second mechanism by which HDAC inhibitors improve ventricular filling. Our data reveal the existence of pathophysiologically relevant covert or hidden cardiac fibrosis that is below the limit of detection of histochemical stains such as picrosirius red, highlighting the need to evaluate fibrosis of the heart using diverse methodologies.


Assuntos
Matriz Extracelular/fisiologia , Sopros Cardíacos/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos
9.
Redox Biol ; 40: 101827, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33485059

RESUMO

During pregnancy, estrogen (E2) stimulates uterine artery blood flow (UBF) by enhancing nitric oxide (NO)-dependent vasodilation. Cystathionine γ-lyase (CSE) promotes vascular NO signaling by producing hydrogen sulfide (H2S) and by maintaining the ratio of reduced-to-oxidized intracellular glutathione (GSH/GSSG) through l-cysteine production. Because redox homeostasis can influence NO signaling, we hypothesized that CSE mediates E2 stimulation of UBF by modulating local intracellular cysteine metabolism and GSH/GSSG levels to promote redox homeostasis. Using non-pregnant ovariectomized WT and CSE-null (CSE KO) mice, we performed micro-ultrasound of mouse uterine and renal arteries to assess changes in blood flow upon exogenous E2 stimulation. We quantified serum and uterine artery NO metabolites (NOx), serum amino acids, and uterine and renal artery GSH/GSSG. WT and CSE KO mice exhibited similar baseline uterine and renal blood flow. Unlike WT, CSE KO mice did not exhibit expected E2 stimulation of UBF. Renal blood flow was E2-insensitive for both genotypes. While serum and uterine artery NOx were similar between genotypes at baseline, E2 decreased NOx in CSE KO serum. Cysteine was also lower in CSE KO serum, while citrulline and homocysteine levels were elevated. E2 and CSE deletion additively decreased GSH/GSSG in uterine arteries. In contrast, renal artery GSH/GSSG was insensitive to E2 or CSE deletion. Together, these findings suggest that CSE maintenance of uterine artery GSH/GSSG facilitates nitrergic signaling in uterine arteries and is required for normal E2 stimulation of UBF. These data have implications for pregnancy pathophysiology and the selective hormone responses of specific vascular beds.


Assuntos
Cistationina gama-Liase , Sulfeto de Hidrogênio , Animais , Cistationina gama-Liase/genética , Estrogênios , Feminino , Glutationa , Homeostase , Camundongos , Gravidez , Artéria Uterina
11.
Kidney Int ; 95(3): 590-610, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30709662

RESUMO

Acute kidney injury (AKI) is a systemic disease associated with widespread effects on distant organs, including the heart. Normal cardiac function is dependent on constant ATP generation, and the preferred method of energy production is via oxidative phosphorylation. Following direct ischemic cardiac injury, the cardiac metabolome is characterized by inadequate oxidative phosphorylation, increased oxidative stress, and increased alternate energy utilization. We assessed the impact of ischemic AKI on the metabolomics profile in the heart. Ischemic AKI was induced by 22 minutes of renal pedicle clamping, and 124 metabolites were measured in the heart at 4 hours, 24 hours, and 7 days post-procedure. Forty-one percent of measured metabolites were affected, with the most prominent changes observed 24 hours post-AKI. The post-AKI cardiac metabolome was characterized by amino acid depletion, increased oxidative stress, and evidence of alternative energy production, including a shift to anaerobic forms of energy production. These metabolomic effects were associated with significant cardiac ATP depletion and with echocardiographic evidence of diastolic dysfunction. In the kidney, metabolomics analysis revealed shifts suggestive of energy depletion and oxidative stress, which were reflected systemically in the plasma. This is the first study to examine the cardiac metabolome after AKI, and demonstrates that effects of ischemic AKI on the heart are akin to the effects of direct ischemic cardiac injury.


Assuntos
Injúria Renal Aguda/metabolismo , Síndrome Cardiorrenal/etiologia , Insuficiência Cardíaca Diastólica/etiologia , Isquemia/metabolismo , Estresse Oxidativo , Injúria Renal Aguda/complicações , Injúria Renal Aguda/etiologia , Animais , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Metabolismo Energético , Coração/diagnóstico por imagem , Insuficiência Cardíaca Diastólica/diagnóstico , Insuficiência Cardíaca Diastólica/metabolismo , Humanos , Isquemia/complicações , Isquemia/etiologia , Rim/irrigação sanguínea , Rim/patologia , Masculino , Metaboloma , Metabolômica , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia
12.
Sci Transl Med ; 10(427)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437146

RESUMO

There are no approved drugs for the treatment of heart failure with preserved ejection fraction (HFpEF), which is characterized by left ventricular (LV) diastolic dysfunction. We demonstrate that ITF2357 (givinostat), a clinical-stage inhibitor of histone deacetylase (HDAC) catalytic activity, is efficacious in two distinct murine models of diastolic dysfunction with preserved EF. ITF2357 blocked LV diastolic dysfunction due to hypertension in Dahl salt-sensitive (DSS) rats and suppressed aging-induced diastolic dysfunction in normotensive mice. HDAC inhibitor-mediated efficacy was not due to lowering blood pressure or inhibiting cellular and molecular events commonly associated with diastolic dysfunction, including cardiac fibrosis, cardiac hypertrophy, or changes in cardiac titin and myosin isoform expression. Instead, ex vivo studies revealed impairment of cardiac myofibril relaxation as a previously unrecognized, myocyte-autonomous mechanism for diastolic dysfunction, which can be ameliorated by HDAC inhibition. Translating these findings to humans, cardiac myofibrils from patients with diastolic dysfunction and preserved EF also exhibited compromised relaxation. These data suggest that agents such as HDAC inhibitors, which potentiate cardiac myofibril relaxation, hold promise for the treatment of HFpEF in humans.


Assuntos
Pressão Sanguínea/fisiologia , Histona Desacetilases/metabolismo , Animais , Pressão Sanguínea/genética , Conectina/metabolismo , Feminino , Insuficiência Cardíaca , Hemodinâmica/fisiologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos , Miosinas/metabolismo , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA