Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986806

RESUMO

Clinical data demonstrate an increased predisposition to cardiovascular disease (CVD) following severe COVID-19 infection. This may be driven by a dysregulated immune response associated with severe disease. Monocytes and vascular tissue resident macrophages play a critical role in atherosclerosis, the main pathology leading to ischemic CVD. Natural killer (NK) cells are a heterogenous group of cells that are critical during viral pathogenesis and are known to be dysregulated during severe COVID-19 infection. Their role in atherosclerotic cardiovascular disease has recently been described. However, the contribution of their altered phenotypes to atherogenesis following severe COVID-19 infection is unknown. We demonstrate for the first time that during and after severe COVID-19, circulating proinflammatory monocytes and activated NK cells act synergistically to increase uptake of oxidized low-density lipoprotein (Ox-LDL) into vascular tissue with subsequent foam cell generation leading to atherogenesis despite recovery from acute infection. Our data provide new insights, revealing the roles of monocytes/macrophages, and NK cells in COVID-19-related atherogenesis.

2.
Front Immunol ; 14: 1201677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671159

RESUMO

HIV-infected patients are at higher risk of developing oral mucosal infection and Epstein-Barr virus (EBV)-associated B cell malignancies. However, the potential role of oral immunity in the pathogenesis of oral lesions is unknown. Tonsils are oral-pharyngeal mucosal-associated lymphoid tissues that play an important role in oral mucosal immunity. In this study, we investigated the changes of innate and adaptive immune cells in macaque tonsils during chronic SIV infection. We found significantly higher frequencies of classical monocytes, CD3+CD56+ (NKT-like) cells, CD3+CD4+CD8+ (DP), and CD161+ CD4 T cells in tonsils from chronic infected compared to naïve animals. On the contrary, intermediate monocytes and CD3+CD4-CD8- (DN) cells were lower in chronic SIV-infected macaques. We further confirmed a recently described small B-cell subset, NKB cells, were higher during chronic infection. Furthermore, both adaptive and innate cells showed significantly higher TNF-α and cytotoxic marker CD107a, while IL-22 production was significantly reduced in innate and adaptive immune cells in chronic SIV-infected animals. A dramatic reduction of IFN-γ production by innate immune cells might indicate enhanced susceptibility to EBV infection and potential transformation of B cells in the tonsils. In summary, our observation shows that the SIV-associated immune responses are distinct in the tonsils compared to other mucosal tissues. Our data extends our understanding of the oral innate immune system during SIV infection and could aid future studies in evaluating the role of tonsillar immune cells during HIV-associated oral mucosal infections.


Assuntos
Infecções por Vírus Epstein-Barr , Infecção Persistente , Animais , Herpesvirus Humano 4 , Mucosa Bucal , Tonsila Palatina
3.
Sci Data ; 4: 170097, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763053

RESUMO

The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within a microcircuit. Here we present morphologies of two classes of brainstem respiratory neurons. First, interneurons derived from Dbx1-expressing precursors (Dbx1 neurons) in the preBötzinger complex (preBötC) of the ventral medulla that generate the rhythm for inspiratory breathing movements. Second, Dbx1 neurons of the intermediate reticular formation that influence the motor pattern of pharyngeal and lingual movements during the inspiratory phase of the breathing cycle. We describe the image acquisition and subsequent digitization of morphologies of respiratory Dbx1 neurons from the preBötC and the intermediate reticular formation that were first recorded in vitro. These data can be analyzed comparatively to examine how morphology influences the roles of Dbx1 preBötC and Dbx1 reticular interneurons in respiration and can also be utilized to create morphologically accurate compartmental models for simulation and modeling of respiratory circuits.


Assuntos
Neurônios/citologia , Formação Reticular , Animais , Animais Recém-Nascidos , Tronco Encefálico , Proteínas de Homeodomínio , Interneurônios/citologia , Camundongos , Neurônios/metabolismo
4.
J Physiol ; 591(10): 2687-703, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23459755

RESUMO

Breathing in mammals depends on an inspiratory-related rhythm that is generated by glutamatergic neurons in the pre-Bötzinger complex (preBötC) of the lower brainstem. A substantial subset of putative rhythm-generating preBötC neurons derive from a single genetic line that expresses the transcription factor Dbx1, but the cellular mechanisms of rhythmogenesis remain incompletely understood. To elucidate these mechanisms, we carried out a comparative analysis of Dbx1-expressing neurons (Dbx1(+)) and non-Dbx1-derived (Dbx1(-)) neurons in the preBötC. Whole-cell recordings in rhythmically active newborn mouse slice preparations showed that Dbx1(+) neurons activate earlier in the respiratory cycle and discharge greater magnitude inspiratory bursts compared with Dbx1(-) neurons. Furthermore, Dbx1(+) neurons required less input current to discharge spikes (rheobase) in the context of network activity. The expression of intrinsic membrane properties indicative of A-current (IA) and hyperpolarization-activated current (Ih) tended to be mutually exclusive in Dbx1(+) neurons. In contrast, there was no such relationship in the expression of currents IA and Ih in Dbx1(-) neurons. Confocal imaging and digital morphological reconstruction of recorded neurons revealed dendritic spines on Dbx1(-) neurons, but Dbx1(+) neurons were spineless. The morphology of Dbx1(+) neurons was largely confined to the transverse plane, whereas Dbx1(-) neurons projected dendrites to a greater extent in the parasagittal plane. The putative rhythmogenic nature of Dbx1(+) neurons may be attributable, in part, to a higher level of intrinsic excitability in the context of network synaptic activity. Furthermore, Dbx1(+) neuronal morphology may facilitate temporal summation and integration of local synaptic inputs from other Dbx1(+) neurons, taking place largely in the dendrites, which could be important for initiating and maintaining bursts and synchronizing activity during the inspiratory phase.


Assuntos
Tronco Encefálico/fisiologia , Proteínas de Homeodomínio/fisiologia , Neurônios/fisiologia , Respiração , Animais , Animais Recém-Nascidos , Tronco Encefálico/citologia , Técnicas In Vitro , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA