Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Biomolecules ; 13(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830762

RESUMO

Plant cytochrome P450 monooxygenases were long considered to be highly substrate-specific, regioselective and stereoselective enzymes, in this respect differing from their animal counterparts. The functional data that have recently accumulated clearly counter this initial dogma. Highly promiscuous P450 enzymes have now been reported, mainly in terpenoid pathways with functions in plant adaptation, but also some very versatile xenobiotic/herbicide metabolizers. An overlap and predictable interference between endogenous and herbicide metabolism are starting to emerge. Both substrate preference and permissiveness vary between plant P450 families, with high promiscuity seemingly favoring retention of gene duplicates and evolutionary blooms. Yet significant promiscuity can also be observed in the families under high negative selection and with essential functions, usually enhanced after gene duplication. The strategies so far implemented, to systematically explore P450 catalytic capacity, are described and discussed.


Assuntos
Sistema Enzimático do Citocromo P-450 , Herbicidas , Sistema Enzimático do Citocromo P-450/metabolismo , Plantas/metabolismo , Duplicação Gênica , Metabolismo Secundário
3.
Mol Plant ; 14(8): 1244-1265, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34216829

RESUMO

The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).


Assuntos
Clorófitas/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Embriófitas/enzimologia , Evolução Molecular , Família Multigênica , Clorófitas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Embriófitas/genética , Filogenia
4.
J Nat Prod ; 84(4): 956-963, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33787264

RESUMO

Phenylalkenoic acid amides, often referred to as phenol amides or hydroxycinnamic acid amides, are bioactive phytochemicals, whose bioactivity can be enhanced by coupling to form dimers or oligomers. Phenylalkenoic acid amides consist of a (hydroxy)cinnamic acid derivative (i.e., the phenylalkenoic acid subunit) linked to an amine-containing compound (i.e., the amine subunit) via an amide bond. The phenylalkenoic acid moiety can undergo oxidative coupling, either catalyzed by oxidative enzymes or due to autoxidation, which leads to the formation of (neo)lignanamides. Dimers described in the literature are often named after the species in which the compound was first discovered; however, the naming of these compounds lacks a systematic approach. We propose a new nomenclature, inspired by the existing system used for hydroxycinnamic acid dimers and lignin. In the proposed systematic nomenclature for (neo)lignanamides, compound names will be composed of three-letter codes and prefixes denoting the subunits, and numbers that indicate the carbon atoms involved in the linkage between the monomeric precursors. The proposed nomenclature is consistent, future-proof, and systematic.


Assuntos
Amidas/química , Terminologia como Assunto , Amidas/classificação , Ácidos Cumáricos , Estrutura Molecular , Fenóis
5.
Plant Cell ; 33(5): 1472-1491, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33638637

RESUMO

The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Sequência Conservada , Embriófitas/enzimologia , Evolução Molecular , Acilação , Aciltransferases/deficiência , Biocatálise , Briófitas/enzimologia , Embriófitas/genética , Regulação Enzimológica da Expressão Gênica , Genes de Plantas , Cinética , Modelos Biológicos , Fenóis/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo
6.
Front Plant Sci ; 12: 593037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584767

RESUMO

Amaranthus retroflexus L. and Chenopodium album L. are noxious weeds that have a cosmopolitan distribution. These species successfully invade and are adapted to a wide variety of diverse climates. In this paper, we evaluated the morphology and biochemistry of 16 populations of A. retroflexus L. and 17 populations of C. album L. Seeds from populations collected from Spain, France, and Iran were grown together at the experimental field of the agriculture research of University of Mohaghegh Ardabili, and a suite of morphological traits and biochemical traits were assessed. Among the populations of A. retroflexus L. and of C. album L. were observed significant differences for all the measured traits. The number of branches (BN) for A. retroflexus L. (12.22) and inflorescence length (FL; 14.34) for C. album L. were the two characteristics that exhibited the maximum coefficient of variation. Principal component analysis of these data identified four principal components for each species that explained 83.54 (A. retroflexus L.) and 88.98 (C. album L.) of the total variation. A dendrogram based on unweighted neighbor-joining method clustered all the A. retroflexus L. and C. album L. into two main clusters and four sub-clusters. Canonical correlation analysis (CCA) was used to evaluate relationships between climate classification of origin and traits. Similarly, the measured characteristics did not group along Köppen climate classification. Both analyses support the conclusion that A. retroflexus L. and C. album L. exhibit high levels of diversity despite similar environmental histories. Both species also exhibit a high diversity of the measured biochemical compounds indicating that they exhibit different metabolic profiles even when grown concurrently and sympatrically. Several of the biochemical constituents identified in our study could serve as effective indices for indirect selection of stresses resistance/tolerance of A. retroflexus L. and C. album L. The diversity of the morphological and biochemical traits observed among these populations illustrates how the unique selection pressures faced by each population can alter the biology of these plants. This understanding provides new insights to how these invasive plant species successfully colonize diverse ecosystems and suggests methods for their management under novel and changing environmental conditions.

7.
New Phytol ; 229(6): 3253-3268, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33253456

RESUMO

Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.


Assuntos
Arabidopsis , Herbicidas , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/genética
8.
Plant Cell ; 31(12): 2947-2972, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628167

RESUMO

Flowers are essential but vulnerable plant organs, exposed to pollinators and florivores; however, flower chemical defenses are rarely investigated. We show here that two clustered terpene synthase and cytochrome P450 encoding genes (TPS11 and CYP706A3) on chromosome 5 of Arabidopsis (Arabidopsis thaliana) are tightly coexpressed in floral tissues, upon anthesis and during floral bud development. TPS11 was previously reported to generate a blend of sesquiterpenes. By heterologous coexpression of TPS11 and CYP706A3 in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana, we demonstrate that CYP706A3 is active on TPS11 products and also further oxidizes its own primary oxidation products. Analysis of headspace and soluble metabolites in cyp706a3 and 35S:CYP706A3 mutants indicate that CYP706A3-mediated metabolism largely suppresses sesquiterpene and most monoterpene emissions from opening flowers, and generates terpene oxides that are retained in floral tissues. In flower buds, the combined expression of TPS11 and CYP706A3 also suppresses volatile emissions and generates soluble sesquiterpene oxides. Florivory assays with the Brassicaceae specialist Plutella xylostella demonstrate that insect larvae avoid feeding on buds expressing CYP706A3 and accumulating terpene oxides. Composition of the floral microbiome appears also to be modulated by CYP706A3 expression. TPS11 and CYP706A3 simultaneously evolved within Brassicaceae and form the most versatile functional gene cluster described in higher plants so far.plantcell;31/12/2947/FX1F1fx1.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/metabolismo , Terpenos/antagonistas & inibidores , Alquil e Aril Transferases/genética , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Flores/genética , Flores/microbiologia , Expressão Gênica , Larva , Microbiota , Modelos Moleculares , Simulação de Acoplamento Molecular , Monoterpenos/metabolismo , Mariposas , Família Multigênica , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Terpenos/metabolismo , Nicotiana/metabolismo , Leveduras/metabolismo
9.
Plant J ; 99(5): 924-936, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038800

RESUMO

Multiple adaptations were necessary when plants conquered the land. Among them were soluble phenylpropanoids related to plant protection and lignin necessary for upright growth and long-distance water transport. Cytochrome P450 monooxygenase 98 (CYP98) catalyzes a rate-limiting step in phenylpropanoid biosynthesis. Phylogenetic reconstructions suggest that a single copy of CYP98 founded each major land plant lineage (bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms), and was maintained as a single copy in all lineages but the angiosperms. In angiosperms, a series of independent gene duplications and losses occurred. Biochemical assays in four angiosperm species tested showed that 4-coumaroyl-shikimate, a known intermediate in lignin biosynthesis, was the preferred substrate of one member in each species, while independent duplicates in Populus trichocarpa and Amborella trichopoda each showed broad substrate ranges, accepting numerous 4-coumaroyl-esters and -amines, and were thus capable of producing a wide range of hydroxycinnamoyl conjugates. The gymnosperm CYP98 from Pinus taeda showed a broad substrate range, but preferred 4-coumaroyl-shikimate as its best substrate. In contrast, CYP98s from the lycophyte Selaginella moellendorffii and the fern Pteris vittata converted 4-coumaroyl-shikimate poorly in vitro, but were able to use alternative substrates, in particular 4-coumaroyl-anthranilate. Thus, caffeoyl-shikimate appears unlikely to be an intermediate in monolignol biosynthesis in non-seed vascular plants, including ferns. The best substrate for CYP98A34 from the moss Physcomitrella patens was also 4-coumaroyl-anthranilate, while 4-coumaroyl-shikimate was converted to lower extents. Despite having in vitro activity with 4-coumaroyl-shikimate, CYP98A34 was unable to complement the Arabidopsis thaliana cyp98a3 loss-of-function phenotype, suggesting distinct properties also in vivo.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Lignina/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Briófitas/metabolismo , Bryopsida/metabolismo , Sistema Enzimático do Citocromo P-450/classificação , Magnoliopsida/metabolismo , Filogenia , Proteínas de Plantas/classificação , Populus , Pteris/metabolismo , Selaginellaceae/metabolismo , Ácido Chiquímico
10.
Plant J ; 99(4): 637-654, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009122

RESUMO

Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , ortoaminobenzoatos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Regiões Promotoras Genéticas/genética
11.
Plant Physiol ; 179(2): 402-414, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30498024

RESUMO

Shikonin and its derivatives are the most abundant naphthoquinone pigments formed in species of the medicinally and economically valuable Boraginaceae. A key step in the shikonin biosynthetic pathway, namely the C-3'' hydroxylation of the prenylated phenolic intermediate geranylhydroquinone, is expected to be catalyzed by a cytochrome P450. To identify cytochrome P450 candidates with transcription profiles similar to those of genes known to be involved in shikonin biosynthesis, we carried out coexpression analysis of transcriptome data sets of shikonin-proficient and shikonin-deficient cell lines and examined the spatial expression of candidate genes in different organs of Arnebia euchroma In biochemical assays using geranylhydroquinone as the substrate, CYP76B74 exhibited geranylhydroquinone 3''-hydroxylase activity and produced 3''-hydroxy-geranylhydroquinone. In CYP76B74 RNA interference A. euchroma hairy roots, shikonin derivative accumulation decreased dramatically, which demonstrated that CYP76B74 is required for shikonin biosynthesis in the plant. Phylogenetic analysis confirmed that CYP76B74 belonged to the CYP76B subfamily and was most likely derived from an ancestral geraniol 10-hydroxylase. In a subcellular localization analysis, a GFP-CYP76B74 fusion localized to endoplasmic reticulum membranes. Our results demonstrate that CYP76B74 catalyzes the key hydroxylation step in shikonin biosynthesis with high efficiency. The characterization of the CYP76B74 described here paves the way for further exploration of the ring closure reactions generating the naphthoquinone skeleton as well as for the alternative metabolism of geranylhydroquinone 3''-hydroxylase to dihydroechinofuran.


Assuntos
Boraginaceae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Naftoquinonas/metabolismo , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Boraginaceae/genética , Sistema Enzimático do Citocromo P-450/genética , Retículo Endoplasmático/metabolismo , Hidroxilação , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Interferência de RNA , Saccharomyces cerevisiae/genética
12.
Curr Opin Biotechnol ; 56: 105-111, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30439673

RESUMO

Lignin evolved concomitantly with the rise of vascular plants on planet earth ∼450 million years ago. Several iterations of exploiting ancestral phenylpropanoid metabolism for biopolymers occurred prior to lignin that facilitated early plants' adaptation to terrestrial environments. The first true lignin was constructed via oxidative coupling of a number of simple phenylpropanoid alcohols to form a sturdy polymer that supports long-distance water transport. This invention has directly contributed to the dominance of vascular plants in the Earth's flora, and has had a profound impact on the establishment of the rich terrestrial ecosystems as we know them today. Within vascular plants, new lignin traits continued to emerge with expanded biological functions pertinent to host fitness under complex environmental niches. Understanding the chemical and biochemical basis for lignin's evolution in diverse plants therefore offers new opportunities and tools for engineering desirable lignin traits in crops with economic significance.


Assuntos
Evolução Biológica , Biotecnologia/métodos , Lignina/metabolismo , Vias Biossintéticas/genética , Lignina/química , Feixe Vascular de Plantas/metabolismo , Propanóis/metabolismo
13.
PLoS One ; 13(6): e0199902, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953551

RESUMO

Cytochromes P450 are enzymes that participate in a wide range of functions in plants, from hormonal signaling and biosynthesis of structural polymers, to defense or communication with other organisms. They represent one of the largest gene/protein families in the plant kingdom. The manual annotation of cytochrome P450 genes in the genome of Vitis vinifera PN40024 revealed 579 P450 sequences, including 279 complete genes. Most of the P450 sequences in grapevine genome are organized in physical clusters, resulting from tandem or segmental duplications. Although most of these clusters are small (2 to 35, median = 3), some P450 families, such as CYP76 and CYP82, underwent multiple duplications and form large clusters of homologous sequences. Analysis of gene expression revealed highly specific expression patterns, which are often the same within the genes in large physical clusters. Some of these genes are induced upon biotic stress, which points to their role in plant defense, whereas others are specifically activated during grape berry ripening and might be responsible for the production of berry-specific metabolites, such as aroma compounds. Our work provides an exhaustive and robust annotation including clear identification, structural organization, evolutionary dynamics and expression patterns for the grapevine cytochrome P450 families, paving the way to efficient functional characterization of genes involved in grapevine defense pathways and aroma biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Anotação de Sequência Molecular , Proteínas de Plantas , Vitis , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Vitis/enzimologia , Vitis/genética
14.
FEMS Yeast Res ; 17(7)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934417

RESUMO

Shikonin and its derivatives are the main active components in the medicinal plant Arnebia euchroma and possess extensive pharmaceutical properties. In this study, we developed an optimized yeast system to obtain high-level production of 3-geranyl-4-hydroxybenzoate acid (GBA), an important intermediate involved in shikonin biosynthesis pathway. For host selection, recombinant expression of p-hydroxybenzoate:geranyltransferase (PGT) derived from A. euchroma was performed in Saccharomyces cerevisiae WAT11U strain and high yield monoterpene strain. In shake flask culture with 1 mM p-hydroxybenzoate acid (PHBA), they could yield GBA at 0.1567 and 20.8624 mg L-1, respectively. Additionally, AePGT6 showed higher enzymatic activity than its homologs. Moreover, by combining improvement in the homologous mevalonate pathway with reconstruction in the heterologous shikimic pathway, a de novo GBA synthesis pathway was constructed in StHP6tHC with co-overexpressed SctHMG1, optimized EcUbiC and AePGT6. A high titer of 179.29 mg L-1 GBA was achieved in StHP6tHC under shake flask fermentation with 1 mM PHBA. These results suggest that yeast could be engineered systematically to enable an efficient monoterpene-quinone or naphthoquinone production.


Assuntos
Vias Biossintéticas , Fermentação , Naftoquinonas/metabolismo , Parabenos/metabolismo , Leveduras/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Ativação Enzimática , Expressão Gênica , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo
15.
Mol Biol Evol ; 34(8): 2041-2056, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505373

RESUMO

Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity.


Assuntos
Brachypodium/genética , Transcinamato 4-Mono-Oxigenase/genética , Sequência de Aminoácidos , Brachypodium/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Retículo Endoplasmático/metabolismo , Evolução Molecular , Duplicação Gênica/genética , Genes Duplicados/genética , Lignina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredução , Filogenia , Domínios Proteicos/genética , Sementes/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo
16.
Nat Commun ; 8: 14713, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28270693

RESUMO

Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions.


Assuntos
Bryopsida/metabolismo , Lignina/metabolismo , Fenóis/metabolismo , Ácido Ascórbico/metabolismo , Evolução Biológica , Bryopsida/genética , Sistema Enzimático do Citocromo P-450/genética , Dessecação , Embriófitas , Técnicas de Inativação de Genes , Magnoliopsida/metabolismo , Lipídeos de Membrana , Componentes Aéreos da Planta/metabolismo , Plantas Geneticamente Modificadas
17.
New Phytol ; 213(1): 264-274, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27560385

RESUMO

Monoterpenes are important constituents of the aromas of food and beverages, including wine. Among monoterpenes in wines, wine lactone has the most potent odor. It was proposed to form via acid-catalyzed cyclization of (E)-8-carboxylinalool during wine maturation. It only reaches very low concentrations in wine but its extremely low odor detection threshold makes it an important aroma compound. Using LC-MS/MS, we show here that the (E)-8-carboxylinalool content in wines correlates with their wine lactone content and estimate the kinetic constant for the very slow formation of wine lactone from (E)-8-carboxylinalool. We show that (E)-8-carboxylinalool is accumulated as a glycoside in grape (Vitis vinifera) berries and that one of the cytochrome P450 enzymes most highly expressed in maturing berries, CYP76F14, efficiently oxidizes linalool to (E)-8-carboxylinalool. Our analysis of (E)-8-carboxylinalool in Riesling × Gewurztraminer grapevine progeny established that the CYP76F14 gene co-locates with a quantitative trait locus for (E)-8-carboxylinalool content in grape berries. Our data support the role of CYP76F14 as the major (E)-8-carboxylinalool synthase in grape berries and the role of (E)-8-carboxylinalool as a precursor to wine lactone in wine, providing new insights into wine and grape aroma metabolism, and new methods for food and aroma research and production.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Lactonas/metabolismo , Odorantes/análise , Vitis/enzimologia , Vinho/análise , Monoterpenos Acíclicos , Frutas/enzimologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lactonas/química , Monoterpenos/química , Monoterpenos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Nicotiana/metabolismo , Vitis/genética
18.
Nat Commun ; 7: 13026, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713409

RESUMO

Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Fabaceae/genética , Genes de Plantas/genética , Turnera/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fabaceae/metabolismo , Duplicação Gênica/genética , Variação Genética/genética , Retroelementos/genética , Turnera/metabolismo
19.
Front Plant Sci ; 7: 1472, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746799

RESUMO

Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation, and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives.

20.
Front Plant Sci ; 7: 509, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200002

RESUMO

Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA