Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(17): 176501, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728727

RESUMO

A description of long-lived photodoped states in Mott insulators is challenging, as it needs to address exponentially separated timescales. We demonstrate how properties of such states can be computed using numerically exact steady state techniques, in particular, the quantum Monte Carlo algorithm, by using a time-local ansatz for the distribution function with separate Fermi functions for the electron and hole quasiparticles. The simulations show that the Mott gap remains robust to large photodoping, and the photodoped state has hole and electron quasiparticles with strongly renormalized properties.

2.
ACS Omega ; 9(6): 6642-6657, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371750

RESUMO

The organic semiconductor 3,4,9,10-perylenetetracarboxylic diimide (PTCDI), a widely used industrial pigment, has been identified as a diffusion-less Na-ion storage material, allowing for exceptionally fast charging/discharging rates. The elimination of diffusion effects in electrochemical measurements enables the assessment of interaction energies from simple cyclic voltammetry experiments through the theoretical work of Laviron and Tokuda. In this work, the two N-substituted perylenes, N,N'-dimethyl-3,4,9,10-perylenetetracarboxylic diimide (Me2PTCDI) and N,N'-diphenyl-3,4,9,10-perylenetetracarboxylic diimide (Ph2PTCDI), as well as the parent molecule 3,4,9,10-perylenetetracarboxylic diimide (H2PTCDI) are investigated as thin-film composite electrodes on carbon fibers for sodium-ion batteries. The composite electrodes are analyzed with Raman spectroscopy. Interaction parameters are extracted from cyclic voltammetry measurements. The stability and rate capability of the three PTCDI derivatives are examined through galvanostatic measurements in sodium-ion half-cell batteries and the influence of the interactions on those parameters is evaluated. In addition, self-consistent charge density function tight binding calculations of the different PTCDI systems interacting with graphite have been carried out. The results show that the binding motif displays notable deviations from an ideal ABA stacking, especially for the neutral state. In addition, data obtained for the electron-transfer integrals show that the difference in performance between different PTCDI thin-film batteries cannot be solely explained by the electron-transfer properties and other factors such as H-bonding have to be considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA