Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Energy Fuels ; 38(7): 6036-6047, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38595992

RESUMO

Lignin is a promising resource for the sustainable production of platform chemicals and biofuels. The paper industry produces large quantities of lignin every year, mostly dissolved in a black liquor. With the help of hydrothermal liquefaction, black liquor can be used directly as a feedstock to depolymerize the lignin to desired products. However, because various cooking chemicals (e.g., NaHS, NaOH) used in the Kraft process, dominant in the paper industry, are also dissolved in the black liquor, it is necessary to study in detail their influence on the process as well as their fate. In this work, the focus was on the fate of sulfur and the influence of sulfide (HS-). For this purpose, hydrothermal liquefaction experiments (250-400 °C) were carried out with black liquor and self-prepared model black liquor with different sulfide concentrations (0-3 g·L-1 HS-) in batch reactors (V = 25 mL), and the products were analyzed to understand the chemical pathways involving sulfur. It was found that the inorganic sulfur compounds react with organic matter to produce organic sulfur compounds. Dimethyl sulfide is the most abundant of these products. The HS- concentration correlates with the amount of dimethyl sulfide produced. Because methanethiol has also been qualitatively detected, the reaction mechanism of Karnofski et al. for the formation of dimethyl sulfide in the Kraft process also applies to the hydrothermal liquefaction of black liquor. Increased sulfide concentration in the feed leads to an accelerated depolymerization of lignin. In contrast, the yields of some aromatic monomers decrease slightly, possibly as a result of repolymerization reactions also occurring more quickly.

2.
Opt Lett ; 49(3): 638-641, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300078

RESUMO

This study demonstrates the concept of an angle-variable compact spectral module. As a key feature, the filter-based module enables highly efficient wavelength-selective light detection by applying the reflective beam path according to the origami example. It was accomplished through inclined mirrors, which allow for different incident angles on the wavelength separating interference filters used in a robust assembly with no moving parts. To experimentally verify the concept, a wavelength range between 550 and 700 nm was detected by 11 spectral channels. These initial results showed the potential to develop easily scalable and application-tailored sensors, which can overcome conventional filter-based sensor approaches that use upright or fixed-angle illumination.

3.
ACS Infect Dis ; 10(2): 676-687, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38287902

RESUMO

Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.


Assuntos
Anti-Infecciosos , Ferro , Desferroxamina/química , Antiparasitários/farmacologia , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Mitocôndrias
4.
Ther Adv Med Oncol ; 15: 17588359231197957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786538

RESUMO

Mitochondrially targeted anticancer drugs (mitocans) that disrupt the energy-producing systems of cancer are emerging as new potential therapeutics. Mitochondrially targeted tamoxifen (MitoTam), an inhibitor of mitochondrial respiration respiratory complex I, is a first-in-class mitocan that was tested in the phase I/Ib MitoTam-01 trial of patients with metastatic cancer. MitoTam exhibited a manageable safety profile and efficacy; among 37% (14/38) of responders, the efficacy was greatest in patients with metastatic renal cell carcinoma (RCC) with a clinical benefit rate of 83% (5/6) of patients. This can be explained by the preferential accumulation of MitoTam in the kidney tissue in preclinical studies. Here we report the mechanism of action and safety profile of MitoTam in a case series of RCC patients. All six patients were males with a median age of 69 years, who had previously received at least three lines of palliative systemic therapy and suffered progressive disease before starting MitoTam. We recorded stable disease in four, partial response in one, and progressive disease (PD) in one patient. The histological subtype matched clear cell RCC (ccRCC) in the five responders and claro-cellular carcinoma with sarcomatoid features in the non-responder. The number of circulating tumor cells (CTCs) was evaluated longitudinally to monitor disease dynamics. Beside the decreased number of CTCs after MitoTam administration, we observed a significant decrease of the mitochondrial network mass in enriched CTCs. Two patients had long-term clinical responses to MitoTam, of 50 and 36 weeks. Both patients discontinued treatment due to adverse events, not PD. Two patients who completed the trial in November 2019 and May 2020 are still alive without subsequent anticancer therapy. The toxicity of MitoTam increased with the dosage but was manageable. The efficacy of MitoTam in pretreated ccRCC patients is linked to the novel mechanism of action of this first-in-class mitochondrially targeted drug.

5.
Cancers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760446

RESUMO

A recent paper published in Nature Medicine reported on the Phase I clinical trial of a mitochondria-targeting anti-cancer agent IACS-01059 in patients with acute myeloid leukemia (AML) and solid tumors [...].

6.
EClinicalMedicine ; 57: 101873, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37064512

RESUMO

Background: Mitochondria present an emerging target for cancer treatment. We have investigated the effect of mitochondrially targeted tamoxifen (MitoTam), a first-in-class anti-cancer agent, in patients with solid metastatic tumours. Methods: MitoTam was tested in an open-label, single-centre (Department of Oncology, General Faculty Hospital, Charles University, Czech Republic), phase I/Ib trial in metastatic patients with various malignancies and terminated oncological therapies. In total, 75 patients were enrolled between May 23, 2018 and July 22, 2020. Phase I evaluated escalating doses of MitoTam in two therapeutic regimens using the 3 + 3 design to establish drug safety and maximum tolerated dose (MTD). In phase Ib, three dosing regimens were applied over 8 and 6 weeks to evaluate long-term toxicity of MitoTam as the primary objective and its anti-cancer effect as a secondary objective. This trial was registered with the European Medicines Agency under EudraCT 2017-004441-25. Findings: In total, 37 patients were enrolled into phase I and 38 into phase Ib. In phase I, the initial application of MitoTam via peripheral vein indicated high risk of thrombophlebitis, which was avoided by central vein administration. The highest dose with acceptable side effects was 5.0 mg/kg. The prevailing adverse effects (AEs) in phase I were neutropenia (30%), anaemia (30%) and fever/hyperthermia (30%), and in phase Ib fever/hyperthermia (58%) together with anaemia (26%) and neutropenia (16%). Serious AEs were mostly related to thromboembolic (TE) complications that affected 5% and 13% of patients in phase I and Ib, respectively. The only statistically significant AE related to MitoTam treatment was anaemia in phase Ib (p = 0.004). Of the tested regimens weekly dosing with 3.0 mg/kg for 6 weeks afforded the best safety profile with almost all being grade 1 (G1) AEs. Altogether, five fatalities occurred during the study, two of them meeting criteria for Suspected Unexpected Serious Adverse Events Reporting (SUSAR) (G4 thrombocytopenia and G5 stroke). MitoTam showed benefit evaluated as clinical benefit rate (CBR) in 37% patients with the largest effect in renal cell carcinoma (RCC) where four out of six patients reached disease stabilisation (SD), one reached partial response (PR) so that in total, five out of six (83%) patients showed CBR. Interpretation: In this study, the MTD was established as 5.0 mg/kg and the recommended dose of MitoTam as 3.0 mg/kg given once per week via central vein with recommended preventive anti-coagulation therapy. The prevailing toxicity included haematological AEs, hyperthermia/fever and TE complications. One fatal stroke and non-fatal G4 thrombocytopenia were recorded. MitoTam showed high efficacy against RCC. Funding: Smart Brain Ltd. Translation: For the Czech translation of the abstract see Supplementary Materials section.

7.
Antimicrob Agents Chemother ; 67(2): e0150622, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688657

RESUMO

Primary amoebic meningoencephalitis is a rare but fatal central nervous system (CNS) disease caused by the "brain-eating amoeba" Naegleria fowleri. A major obstacle is the requirement for drugs with the ability to cross the blood-brain barrier, which are used in extremely high doses, cause severe side effects, and are usually ineffective. We discovered that the 4-aminomethylphenoxy-benzoxaborole AN3057 exhibits nanomolar potency against N. fowleri, and experimental treatment of infected mice significantly prolonged survival and demonstrated a 28% relapse-free cure rate.


Assuntos
Amebíase , Infecções Protozoárias do Sistema Nervoso Central , Meningoencefalite , Naegleria fowleri , Animais , Camundongos , Amebíase/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Barreira Hematoencefálica
8.
J Opt Soc Am A Opt Image Sci Vis ; 39(11): 1992-2000, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520695

RESUMO

Hyperchromatic systems are characterized by strong longitudinal chromatic aberrations that are quantitatively described by very small equivalent Abbe numbers. In this contribution, doublet systems are systematically studied with the aim of obtaining extreme values for the equivalent Abbe numbers. Both purely refractive combinations and hybrid systems of diffractive and refractive components are considered. Chromatic axial splitting is determined as a function of the optical powers of the individual components as well as the dispersion properties of the materials involved. In order to determine actual implementable configurations for extremely small equivalent Abbe numbers, a systematic ray-trace analysis is performed in addition to paraxial studies, taking into account geometric constraints on lens curvatures and considering also complete, continuous dispersion curves. As extreme values for systems with appropriate imaging quality, an equivalent Abbe number of υ~=-2.5 is obtained for the purely refractive approach, and υ~=0.4 for the hybrid case, which is more than 8 times smaller than the absolute value of a single diffractive lens.

9.
Antimicrob Agents Chemother ; 66(8): e0072722, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35856666

RESUMO

Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations, including adverse side effects, complex administration, and increasing occurrence of resistance. The discovery and development of new therapeutic agents is a costly and lengthy process. Therefore, repurposing drugs with already established clinical application offers an attractive, fast-track approach for novel treatment options. In this study, we show that the anti-cancer drug candidate MitoTam, a mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily distinct pathogens in vitro, including pathogenic fungi, Plasmodium falciparum, and several species of trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam treatment was also effective in vivo and significantly reduced parasitemia of two medically important parasites, Leishmania mexicana and Trypanosoma brucei, in their respective animal infection models. Functional analysis in the bloodstream form of T. brucei showed that MitoTam rapidly altered mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for which there are no efficient therapies and for which drug development is not a priority.


Assuntos
Antineoplásicos , Trypanosoma brucei brucei , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Potencial da Membrana Mitocondrial , Plasmodium falciparum
10.
Nat Commun ; 13(1): 1866, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387987

RESUMO

Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Idoso , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Humanos , Camundongos , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
12.
Appl Opt ; 61(8): 2049-2059, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35297897

RESUMO

This paper presents concept, optical design, and the implementation of a novel, to the best of our knowledge, lithographic exposure tool for the fabrication of rotationally symmetric meso- and microscale optical structures using a variable ring-shaped light distribution. Compared to the conventional lithographic technique of direct writing in Cartesian coordinates, which is intrinsically suboptimal for the fabrication of rotationally symmetric optical structures, this approach allows for fast exposure and avoids disturbing stitching effects. The diameter of the exposure ring varies between 1.6 and 6.5 mm, and the ring width measures ∼75µm full width at half-maximum for all diameters. The basic capabilities of the exposure tool are demonstrated by the fabrication of exemplary meso- and microscale structures such as diffractive axicon elements, phase rings, Fresnel zone plates and zone plate arrays.

13.
Appl Opt ; 61(33): 9996-10001, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606832

RESUMO

This paper demonstrates a method to significantly enhance the detection efficiency of filter-based spectral sensors without the use of additional dichroic optics for spectral preselection. The fundamental principle is that light reflected from one interference filter or filter segment can be used consecutively, reducing the overall system losses. The proof-of-concept is presented using two compact optical modules. The first module uses 10 individual filters between 520 and 800 nm, and the second is capable of continuous spectrum acquisition between 450 and 825 nm using a linear variable filter (LVF) as a key element. An efficiency increase factor of up to approximately 100 compared to a common system, where the entire LVF is directly illuminated, was demonstrated.

14.
Cancer Res ; 81(9): 2289-2303, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33685989

RESUMO

Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.


Assuntos
Carcinogênese/efeitos dos fármacos , Desferroxamina/administração & dosagem , Quelantes de Ferro/administração & dosagem , Ferro/metabolismo , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Carga Tumoral/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Heme/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Neoplasias/patologia , Células PC-3 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncogene ; 40(14): 2539-2552, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686239

RESUMO

Pancreatic cancer is one of the deadliest forms of cancer, which is attributed to lack of effective treatment options and drug resistance. Mitochondrial inhibitors have emerged as a promising class of anticancer drugs, and several inhibitors of the electron transport chain (ETC) are being clinically evaluated. We hypothesized that resistance to ETC inhibitors from the biguanide class could be induced by inactivation of SMAD4, an important tumor suppressor involved in transforming growth factor ß (TGFß) signaling, and associated with altered mitochondrial activity. Here we show that, paradoxically, both TGFß-treatment and the loss of SMAD4, a downstream member of TGFß signaling cascade, induce resistance to biguanides, decrease mitochondrial respiration, and fragment the mitochondrial network. Mechanistically, the resistance of SMAD4-deficient cells is mediated by increased mitophagic flux driven by MAPK/ERK signaling, whereas TGFß-induced resistance is autophagy-independent and linked to epithelial-to-mesenchymal transition (EMT). Interestingly, mitochondria-targeted tamoxifen, a complex I inhibitor under clinical trial, overcomes resistance mediated by SMAD4-deficiency or TGFß signaling. Our data point to differential mechanisms underlying the resistance to treatment in PDAC arising from TGFß signaling and SMAD4 loss, respectively. The findings will help the development of mitochondria-targeted therapy for pancreatic cancer patients with SMAD4 as a plausible predictive marker.


Assuntos
Neoplasias Pancreáticas/metabolismo , Proteína Smad4/metabolismo , Humanos , Mitofagia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais
16.
Cell Death Differ ; 26(2): 276-290, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29786070

RESUMO

Cellular senescence is a form of cell cycle arrest that limits the proliferative potential of cells, including tumour cells. However, inability of immune cells to subsequently eliminate senescent cells from the organism may lead to tissue damage, inflammation, enhanced carcinogenesis and development of age-related diseases. We found that the anticancer agent mitochondria-targeted tamoxifen (MitoTam), unlike conventional anticancer agents, kills cancer cells without inducing senescence in vitro and in vivo. Surprisingly, it also selectively eliminates both malignant and non-cancerous senescent cells. In naturally aged mice treated with MitoTam for 4 weeks, we observed a significant decrease of senescence markers in all tested organs compared to non-treated animals. Mechanistically, we found that the susceptibility of senescent cells to MitoTam is linked to a very low expression level of adenine nucleotide translocase-2 (ANT2), inherent to the senescent phenotype. Restoration of ANT2 in senescent cells resulted in resistance to MitoTam, while its downregulation in non-senescent cells promoted their MitoTam-triggered elimination. Our study documents a novel, translationally intriguing role for an anticancer agent targeting mitochondria, that may result in a new strategy for the treatment of age-related diseases and senescence-associated pathologies.


Assuntos
Translocador 2 do Nucleotídeo Adenina/metabolismo , Antineoplásicos Hormonais/farmacologia , Senescência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tamoxifeno/farmacologia , Translocador 2 do Nucleotídeo Adenina/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Mitocôndrias/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Aging Cell ; 17(4): e12772, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740925

RESUMO

Metformin, the first drug chosen to be tested in a clinical trial aimed to target the biology of aging per se, has been clinically exploited for decades in the absence of a complete understanding of its therapeutic targets or chemical determinants. We here outline a systematic chemoinformatics approach to computationally predict biomolecular targets of metformin. Using several structure- and ligand-based software tools and reference databases containing 1,300,000 chemical compounds and more than 9,000 binding sites protein cavities, we identified 41 putative metformin targets including several epigenetic modifiers such as the member of the H3K27me3-specific demethylase subfamily, KDM6A/UTX. AlphaScreen and AlphaLISA assays confirmed the ability of metformin to inhibit the demethylation activity of purified KDM6A/UTX enzyme. Structural studies revealed that metformin might occupy the same set of residues involved in H3K27me3 binding and demethylation within the catalytic pocket of KDM6A/UTX. Millimolar metformin augmented global levels of H3K27me3 in cultured cells, including reversion of global loss of H3K27me3 occurring in premature aging syndromes, irrespective of mitochondrial complex I or AMPK. Pharmacological doses of metformin in drinking water or intraperitoneal injection significantly elevated the global levels of H3K27me3 in the hepatic tissue of low-density lipoprotein receptor-deficient mice and in the tumor tissues of highly aggressive breast cancer xenograft-bearing mice. Moreover, nondiabetic breast cancer patients receiving oral metformin in addition to standard therapy presented an elevated level of circulating H3K27me3. Our biocomputational approach coupled to experimental validation reveals that metformin might directly regulate the biological machinery of aging by targeting core chromatin modifiers of the epigenome.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Metformina/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Animais , Biocatálise , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Feminino , Histona Desmetilases/metabolismo , Humanos , Ligantes , Metformina/química , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Proteínas Nucleares/metabolismo
18.
Antioxid Redox Signal ; 26(2): 84-103, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27392540

RESUMO

AIMS: Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2high disease. RESULTS: We demonstrate that Her2high cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2high tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2high background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2high cells to MitoTam is dependent on the mitochondrial fraction of Her2. INNOVATION: Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam. CONCLUSION: We propose that the ETC is a suitable therapeutic target in Her2high disease. Antioxid. Redox Signal. 26, 84-103.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Receptor ErbB-2/metabolismo , Antineoplásicos/química , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Tamoxifeno/farmacologia
19.
Mol Cancer Ther ; 15(12): 2875-2886, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27765848

RESUMO

Pancreatic cancer is one of the hardest-to-treat types of neoplastic diseases. Metformin, a widely prescribed drug against type 2 diabetes mellitus, is being trialed as an agent against pancreatic cancer, although its efficacy is low. With the idea of delivering metformin to its molecular target, the mitochondrial complex I (CI), we tagged the agent with the mitochondrial vector, triphenylphosphonium group. Mitochondrially targeted metformin (MitoMet) was found to kill a panel of pancreatic cancer cells three to four orders of magnitude more efficiently than found for the parental compound. Respiration assessment documented CI as the molecular target for MitoMet, which was corroborated by molecular modeling. MitoMet also efficiently suppressed pancreatic tumors in three mouse models. We propose that the novel mitochondrially targeted agent is clinically highly intriguing, and it has a potential to greatly improve the bleak prospects of patients with pancreatic cancer. Mol Cancer Ther; 15(12); 2875-86. ©2016 AACR.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Antimetabólitos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Potencial da Membrana Mitocondrial , Metformina/química , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Consumo de Oxigênio , Neoplasias Pancreáticas/tratamento farmacológico , Ligação Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Pediatr Nephrol ; 28(7): 1141-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23519521

RESUMO

BACKGROUND: Atypical haemolytic uremic syndrome (aHUS) is often associated with a high risk of disease recurrence and subsequent graft loss after isolated renal transplantation. Evidence-based recommendations for a mutation-based management after renal transplantation in aHUS caused by a combined mutation with complement factor I (CFI) and membrane cofactor protein CD46 (MCP) are limited. CASE-DIAGNOSIS/TREATMENT: We describe a 9-year-old boy with a first manifestation of aHUS at the age of 9 months carrying combined heterozygous mutations in the CFI and MCP genes. At the age of 5 years, he underwent isolated cadaveric renal transplantation. Fresh frozen plasma was administered during and after transplantation, tapered and finally stopped after 3 years. CONCLUSIONS: During the 5-year follow-up after transplantation there have been no signs of aHUS recurrence and graft function has remained good. The combination of heterozygous MCP and CFI mutations with aHUS might have a positive impact on the post-transplant course, possibly predicting a lower risk of aHUS recurrence after an isolated cadaveric renal transplantation.


Assuntos
Fator I do Complemento/genética , Sobrevivência de Enxerto , Síndrome Hemolítico-Urêmica/cirurgia , Transplante de Rim , Proteína Cofatora de Membrana/genética , Mutação , Síndrome Hemolítico-Urêmica Atípica , Transfusão de Componentes Sanguíneos , Criança , Predisposição Genética para Doença , Síndrome Hemolítico-Urêmica/genética , Heterozigoto , Humanos , Imunossupressores/uso terapêutico , Masculino , Fenótipo , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA