Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Chem Commun (Camb) ; 59(59): 9142, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37435747

RESUMO

Correction for 'Making good on a promise: ionic liquids with genuinely high degrees of thermal stability' by Brooks D. Rabideau et al., Chem. Commun., 2018, 54, 5019-5031, https://doi.org/10.1039/C8CC01716F.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37450766

RESUMO

INTRODUCTION: Differentiating septic arthritis from aseptic arthritis (AA) of the knee is difficult without arthrocentesis. Although procalcitonin (PCT) has shown diagnostic value in identifying bacterial infections, it has not been established as a reliable marker for identifying septic arthritis (SA). Recent studies have shown promise in the use of PCT as a useful systemic marker for identifying septic arthritis versus AA. This observational retrospective review compares PCT with routine inflammatory markers as a tool for differentiating septic arthritis versus AA in patients with acute, atraumatic knee pain. METHODS: Fifty-three consecutive patients (24 SA, 29 AA) were retrospectively reviewed at one institution with concern for SA. SA was diagnosed based on a physical examination, laboratory markers, and arthrocentesis. Laboratory indices were compared between the septic arthritis and AA groups. Data analysis was conducted to define sensitivity and specificity. Receiver operator characteristic curve analysis and regression were conducted to determine the best marker for acute SA of the knee. RESULTS: Using multiple logistic regression, bacteremia (OR 6.75 ± 5.75) was determined to be the greatest predictor of SA. On linear regression, concomitant bacteremia (coef 3.07 ± 0.87), SA (coef 2.18 ± 0.70), and the presence of pseudogout crystals (coef 1.80 ± 0.83) on microscopy predicted an increase in PCT. Using a PCT cutoff of 0.25 ng/mL yields a sensitivity of 91.7% and specificity of 55.2% for predicting SA; however, the ideal cutoff in our series was 0.32 ng/mL with a sensitivity of 79.2% and specificity of 72.4%. PCT was superior to the white blood cell count, erythrocyte sedimentation rate, and C-reactive protein in the area under the receiver-operating characteristic curve analysis. DISCUSSION: Procalcitonin seems to be the most sensitive and specific systemic marker in differentiating septic from AA.


Assuntos
Artrite Infecciosa , Bacteriemia , Humanos , Pró-Calcitonina , Estudos Retrospectivos , Calcitonina , Peptídeo Relacionado com Gene de Calcitonina , Precursores de Proteínas , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/microbiologia
3.
RSC Adv ; 13(33): 22928-22935, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37520100

RESUMO

Poly(ester amide)s (PEAs) bearing various side chains were synthesized by post-polymerization modification of PA-1, a vinylidene containing PEA. The thiols 1-dodecanethiol (1A-SH), 2-phenylethanethiol (1B-SH), 2-mercaptoethanol (1C-SH), thioglycolic acid (1D-SH), furfuryl mercaptan (1E-SH) and sodium-2-mercaptoethanesulfonate (1F-SH) were reacted with PA-1 to form PEAs PA-1A through PA-1F respectively. PEAs containing non-polar thiol side chains (PA-1A, PA-1B, PA-1E), showed little change in solubility compared to PA-1, while PEAs with more polar side chains improved solubility in more polar solvents. PA-1F, functionalized with sodium-2-mercaptoethanesulfonate, became water-soluble. The introduction of pendant functional groups impacted the thermal behaviors of PEAs in a wide range. The PEAs were thermally stable up to 368 °C, with glass transition temperatures (Tg) measured between 117 to 152 °C. Moreover, to demonstrate the versatility of the PEAs, thermal reprocessable networks and polyurethanes were successfully fabricated by reacting with a bismaleimide (1,6-bis(maleimido)hexane, 1,6-BMH) and a diisocyanate (4,4'-diphenylmethane diisocyanate, 4,4'-MDI), respectively. This study paves the way for the facile synthesis of functional poly(ester amide)s with great potential in many fields.

5.
Phys Chem Chem Phys ; 25(28): 19271, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37427887

RESUMO

Correction for 'Tuning the melting point of selected ionic liquids through adjustment of the cation's dipole moment' by Brooks D. Rabideau et al., Phys. Chem. Chem. Phys., 2020, 22, 12301-12311, https://doi.org/10.1039/D0CP01214A.

6.
Cureus ; 15(2): e35143, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36949973

RESUMO

Introduction Ex vivo machine perfusion describes the technique where organs are continuously perfused and oxygenated extracorporeally (at physiological conditions) to maintain the organs' viability. To our knowledge, there are currently no reported studies describing ex vivo perfusion of a single hepatic segment. Here, we describe the development of a porcine ex vivo hepatic segmental perfusion model to demonstrate proof of concept and support further research into the ex vivo perfusion of the human liver using discarded tissue.  Methods Whole livers were retrieved from abattoir-derived pigs and connected to a normothermic extracorporeal perfusion circuit. Constant segmental perfusion via the common or segmental hepatic artery and portal vein with heparinised autologous blood was established. The viability of the perfused organ was assessed by monitoring perfusion pressures, flow rates and histology samples. Results Following perfusion and optimisation of the model for three hepatic segments, the third perfusion demonstrated viable hepatocytes centrally after 4 h of segmental perfusion. Conclusion Ex vivo hepatic segmental perfusion is technically challenging but its success in a porcine model and the principles learned should facilitate the development of an analogous human model using discarded tissue following formal liver resections. The model would use a healthy liver segment following a major formal resection such as a hemi-hepatectomy and ex vivo perfusion performed via a segmental hepatic artery and portal vein. If successful this model would represent a significant development and enable ethical translation research to assess the response of human livers to a variety of stressors, including toxicity and infection.

7.
J Phys Chem B ; 127(6): 1429-1442, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36745872

RESUMO

The replacement of unsaturation with a cyclopropane motif as a (bio)isostere is a widespread strategy in bacteria to tune the fluidity of lipid bilayers and protect membranes when exposed to adverse environmental conditions, e.g., high temperature, low pH, etc. Inspired by this phenomenon, we herein address the relative effect of the cyclopropanation, both cis and trans configurations, on melting points, packing efficiency, and order of a series of lipid-like ionic liquids via a combination of thermophysical analysis, X-ray crystallography, and computational modeling. The data indicate there is considerable structural latitude possible when designing highly lipophilic ionic liquids that exhibit low melting points. While cyclopropanation of the lipid-like ionic liquids provides more resistance to aerobic degradation than their olefin analogs, the impact on the melting point decrease is not as pronounced. Our results demonstrate that incorporating one or more cyclopropyl moieties in long aliphatic chains of imidazolium-based ionic liquids is highly effective in lowering the melting points of such materials relative to their counterparts bearing linear, saturated, or thioether side chains. It is shown that the cyclopropane moiety effectively disrupts packing, favoring formation of gauche conformer in the side chains, resulting in enhancement of fluidity. This was irrespective of the configuration of the methylene bridge, although marked differences in the effect of cis- and trans-monocyclopropanated ILs on the melting points were observed.

8.
Mutagenesis ; 37(5-6): 227-237, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36426854

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer death in the UK. Novel therapeutic prevention strategies to inhibit the development and progression of CRC would be invaluable. Potential contenders include low toxicity agents such as dietary-derived agents or repurposed drugs. However, in vitro and in vivo models used in drug development often do not take into account the heterogeneity of tumours or the tumour microenvironment. This limits translation to a clinical setting. Our objectives were to develop an ex vivo method utilizing CRC and adenoma patient-derived explants (PDEs) which facilitates screening of drugs, assessment of toxicity, and efficacy. Our aims were to use a multiplexed immunofluorescence approach to demonstrate the viability of colorectal tissue PDEs, and the ability to assess immune cell composition and interactions. Using clinically achievable concentrations of curcumin, we show a correlation between curcumin-induced tumour and stromal apoptosis (P < .001) in adenomas and cancers; higher stromal content is associated with poorer outcomes. B cell (CD20+ve) and T cell (CD3+ve) density of immune cells within tumour regions in control samples correlated with curcumin-induced tumour apoptosis (P < .001 and P < .05, respectively), suggesting curcumin-induced apoptosis is potentially predicted by baseline measures of immune cells. A decrease in distance between T cells (CD3+ve) and cytokeratin+ve cells was observed, indicating movement of T cells (CD3+ve) towards the tumour margin (P < .001); this change is consistent with an immune environment associated with improved outcomes. Concurrently, an increase in distance between T cells (CD3+ve) and B cells (CD20+ve) was detected following curcumin treatment (P < .001), which may result in a less immunosuppressive tumour milieu. The colorectal tissue PDE model offers significant potential for simultaneously assessing multiple biomarkers in response to drug exposure allowing a greater understanding of mechanisms of action and efficacy in relevant target tissues, that maintain both their structural integrity and immune cell compartments.


Assuntos
Adenoma , Neoplasias Colorretais , Humanos , Adenoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
9.
PLoS One ; 17(2): e0262364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130302

RESUMO

Research into the metabolism of the non-essential amino acid (NEAA) proline in cancer has gained traction in recent years. The last step in the proline biosynthesis pathway is catalyzed by pyrroline-5-carboxylate reductase (PYCR) enzymes. There are three PYCR enzymes: mitochondrial PYCR1 and 2 and cytosolic PYCR3 encoded by separate genes. The expression of the PYCR1 gene is increased in numerous malignancies and correlates with poor prognosis. PYCR1 expression sustains cancer cells' proliferation and survival and several mechanisms have been implicated to explain its oncogenic role. It has been suggested that the biosynthesis of proline is key to sustain protein synthesis, support mitochondrial function and nucleotide biosynthesis. However, the links between proline metabolism and cancer remain ill-defined and are likely to be tissue specific. Here we use a combination of human dataset, human tissue and mouse models to show that the expression levels of the proline biosynthesis enzymes are significantly increased during colorectal tumorigenesis. Functionally, the expression of mitochondrial PYCRs is necessary for cancer cells' survival and proliferation. However, the phenotypic consequences of PYCRs depletion could not be rescued by external supplementation with either proline or nucleotides. Overall, our data suggest that, despite the mechanisms underlying the role of proline metabolism in colorectal tumorigenesis remain elusive, targeting the proline biosynthesis pathway is a suitable approach for the development of novel anti-cancer therapies.


Assuntos
Neoplasias Colorretais
10.
Lancet Microbe ; 2(12): e695-e703, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34901898

RESUMO

BACKGROUND: Hypervirulent Klebsiella pneumoniae (hvKp) strains of capsule type K1 and K2 cause invasive infections associated with hepatic abscesses, which can be difficult to treat and are frequently associated with relapsing infections. Other K pneumoniae strains (non-hvKp), including lineages that have acquired carbapenem resistance, do not manifest this pathology. In this work we aimed to test the hypothesis that within-macrophage replication is a key mechanism underpinning abscess formation in hvKp infections. METHODS: In this exploratory investigation, to study the pathophysiology of abscess formation, mice were intravenously infected with 106 colony forming units (CFU) of either hvKp isolates (six strains) or non-hvKp isolates (seven strains). Intracellular bacterial replication and neutrophil influx in liver and spleen was quantified by fluorescence microscopy of sliced cryopreserved organs of mice collected 30 min, 6 h, and 24 h after infection with the aim to provide data of bacterial association to Kupffer cells in the liver and to the different tissue macrophages in the spleen. Microbiological and microscopy analysis of an ex-vivo model of pig liver and spleen infection were used to confirm within-macrophage replication. Pig organs were perfused with heparinised, autologous pig's blood and injected with 6·5 × 107 CFU of hvKp K2 sequence type 25 strain GMR151. Blood and tissue biopsies collected before infection and 30 min, 1 h, 2 h, 3 h, 4 h, and 5 h after infection were used to measure bacterial counts and to identify the subcellular localisation of bacteria by immunohistochemistry analysis. FINDINGS: We show that hvKp resisted phagocyte-mediated clearance and replicated in mouse liver macrophages to form clusters 6 h after infection, with a mean of 7·0 bacteria per Kupffer cell (SD 6·2); however, non-hvKp were efficiently cleared (mean 1·5 bacteria per cell [SD 1·1]). HvKp infection promoted neutrophil recruitment to sites of infection, which in the liver resulted in histopathological signs of abscess formation as early as 24 h post-infection. Experiments in pig organs which share a high functional and anatomical resemblance to human organs, provided strong evidence for the propensity of hvKp to replicate within the hepatic macrophages. INTERPRETATION: These findings show subversion of innate immune processes in the liver by K pneumoniae and resistance to Kupffer cell mediated clearance as an explanation for the propensity of hvKp strains to cause hepatic abscesses. FUNDING: University of Oxford and a Royal Society Wolfson grant funded biosafety facility.


Assuntos
Infecções por Klebsiella , Abscesso Hepático , Animais , Infecções por Klebsiella/diagnóstico , Klebsiella pneumoniae , Abscesso Hepático/microbiologia , Macrófagos , Camundongos , Perfusão , Suínos , Virulência
11.
RSC Adv ; 11(50): 31328-31338, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496850

RESUMO

Binary mixtures of hydrocarbons and a thermally robust ionic liquid (IL) incorporating a perarylphosphonium-based cation are investigated experimentally and computationally. Experimentally, it is seen that excess toluene added to the IL forms two distinct liquid phases, an "ion-rich" phase of fixed composition and a phase that is nearly pure toluene. Conversely, n-heptane is observed to be essentially immiscible in the neat IL. Molecular dynamics simulations capture both of these behaviours. Furthermore, the simulated composition of the toluene-rich IL phase is within 10% of the experimentally determined composition. Additional simulations are performed on the binary mixtures of the IL and ten other small hydrocarbons having mixed aromatic/aliphatic character. It is found that hydrocarbons with a predominant aliphatic character are largely immiscible with the IL, while those with a predominant aromatic character readily mix with the IL. A detailed analysis of the structure and energetic changes that occur on mixing reveals the nature of the ion-rich phase. The simulations show a bicontinuous phase with hydrocarbon uptake akin to absorption and swelling by a porous absorbent. Aromatic hydrocarbons are driven into the neat IL via dispersion forces with the IL cations and, to a lesser extent, the IL anions. The ion-ion network expands to accommodate the hydrocarbons, yet maintains a core connective structure. At a certain loading, this network becomes stretched to its limit. The energetic penalty associated with breaking the core connective network outweighs the gain from new hydrocarbon-IL interactions, leaving additional hydrocarbons in the neat phase. The spatially alternating charge of the expanded IL network is shown to interact favourably with the stacked aromatic subphase, something not possible for aliphatic hydrocarbons.

12.
Phys Chem Chem Phys ; 22(21): 12301-12311, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32432261

RESUMO

In previous work with thermally robust salts [Cassity et al., Phys. Chem. Chem. Phys., 2017, 19, 31560] it was noted that an increase in the dipole moment of the cation generally led to a decrease in the melting point. Molecular dynamics simulations of the liquid state revealed that an increased dipole moment reduces cation-cation repulsions through dipole-dipole alignment. This was believed to reduce the liquid phase enthalpy, which would tend to lower the melting point of the IL. In this work we further test this principle by replacing hydrogen atoms with fluorine atoms at selected positions within the cation. This allows us to alter the electrostatics of the cation without substantially affecting the sterics. Furthermore, the strength of the dipole moment can be controlled by choosing different positions within the cation for replacement. We studied variants of four different parent cations paired with bistriflimide and determined their melting points, and enthalpies and entropies of fusion through DSC experiments. The decreases in the melting point were determined to be enthalpically driven. We found that the dipole moment of the cation, as determined by quantum chemical calculations, is inversely correlated with the melting point of the given compound. Molecular dynamics simulations of the crystalline and solid states of two isomers showed differences in their enthalpies of fusion that closely matched those seen experimentally. Moreover, this reduction in the enthalpy of fusion was determined to be caused by an increase in the enthalpy of the crystalline state. We provide evidence that dipole-dipole interactions between cations leads to the formation of cationic domains in the crystalline state. These cationic associations partially block favourable cation-anion interactions, which are recovered upon melting. If, however, the dipole-dipole interactions between cations is too strong they have a tendency to form glasses. This study provides a design rule for lowering the melting point of structurally similar ILs by altering their dipole moment.

13.
RSC Adv ; 10(10): 5919-5929, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35497420

RESUMO

We examine the role of water and urea in cellulose solubility in tetrabutylammonium hydroxide (TBAH). Molecular dynamics simulations were performed for several different solvent compositions with a fixed cellulose fraction. For each composition, two simulations were carried out with cellulose fixed in each of the crystalline and the dissolved states. From the enthalpy and the entropy of the two states, the difference in Gibbs free energy (ΔG) and hence the spontaneity is determined. A comparison with solubility experiments showed a strong correlation between the calculated ΔG and the experimental measurements. A breakdown of the enthalpic and entropic contributions reveals the roles of water and urea in solubility. At high water concentration, a drop in solubility is attributed to both increased enthalpy and decreased entropy of dissolution. Water displaces strong IL-cellulose interactions for weaker water-cellulose interactions, resulting in an overall enthalpy increase. This is accompanied by a strong decrease in entropy, which is primarily attributed to both water and the entropy of mixing. Adding urea to TBAH(aq) increases solubility by an addition to the mixing term and by reducing losses in solvent entropy upon dissolution. In the absence of urea, the flexible [TBA]+ ions lose substantial degrees of freedom when they interact with cellulose. When urea is present, it partially replaces [TBA]+ and to a lesser extent OH- near cellulose, losing less entropy because of its rigid structure. This suggests that one way to boost the dissolving power of an ionic liquid is to limit the number of degrees of freedom from the outset.

14.
Case Rep Orthop ; 2019: 2038983, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637073

RESUMO

Rotating-bearing total knee arthroplasty has been theorized to have some advantages in the kinematics and wear characteristics of total knee arthroplasty. A rare complication of rotating-bearing total knee arthroplasty is rotary dislocation, spinout, of the polyethylene component. When these dislocations occur, they typically result in a 90-degree dislocation in respect to the axial axis of the knee. This case is unique in that it presents a complete 180-degree polyethylene dislocation without trauma.

15.
Cell Death Dis ; 9(9): 894, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166531

RESUMO

Improving early detection of colorectal cancer (CRC) is a key public health priority as adenomas and stage I cancer can be treated with minimally invasive procedures. Population screening strategies based on detection of occult blood in the feces have contributed to enhance detection rates of localized disease, but new approaches based on genetic analyses able to increase specificity and sensitivity could provide additional advantages compared to current screening methodologies. Recently, circulating cell-free DNA (cfDNA) has received much attention as a cancer biomarker for its ability to monitor the progression of advanced disease, predict tumor recurrence and reflect the complex genetic heterogeneity of cancers. Here, we tested whether analysis of cfDNA is a viable tool to enhance detection of colon adenomas. To address this, we assessed a cohort of patients with adenomas and healthy controls using droplet digital PCR (ddPCR) and mutation-specific assays targeted to trunk mutations. Additionally, we performed multiregional, targeted next-generation sequencing (NGS) of adenomas and unmasked extensive heterogeneity, affecting known drivers such as APC, KRAS and mismatch repair (MMR) genes. However, tumor-related mutations were undetectable in patients' plasma. Finally, we employed a preclinical mouse model of Apc-driven intestinal adenomas and confirmed the inability to identify tumor-related alterations via cfDNA, despite the enhanced disease burden displayed by this experimental cancer model. Therefore, we conclude that benign colon lesions display extensive genetic heterogeneity, that they are not prone to release DNA into the circulation and are unlikely to be reliably detected with liquid biopsies, at least with the current technologies.


Assuntos
Adenoma/diagnóstico , DNA Tumoral Circulante/isolamento & purificação , Neoplasias do Colo/diagnóstico , Detecção Precoce de Câncer/métodos , Adenoma/sangue , Adenoma/genética , Proteína da Polipose Adenomatosa do Colo/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias do Colo/sangue , Neoplasias do Colo/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/métodos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
16.
Int J Surg ; 54(Pt A): 206-215, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29730077

RESUMO

INTRODUCTION: An ex vivo normothermic porcine pancreas perfusion (ENPPP) model was established to investigate effects of machine perfusion pressures on graft preservation. METHODOLOGY: Nine porcine pancreata were perfused with autologous blood at 50 mmHg (control) pressure. Graft viability was compared against four ex-vivo porcine pancreata perfused at 20 mmHg ('low') pressure. Arterio-venous oxygen gas differentials, biochemistry, and graft insulin responses to glucose stimulation were compared. Immunohistochemistry stains compared the cellular viability. RESULTS: Control pancreata were perfused for a median of 3 h (range 2-4 h) with a mean pressure 50 mmHg and graft flow 141 mL min-1. In comparison, all of the 'low' pressure models were perfused for 4 h, with mean perfusion pressure 20 mmHg and graft flow 40 mL.min-1. All pancreata demonstrated cellular viability with evidence of oxygen consumption with preserved endocrine and exocrine function. However, following statistical analysis, the 'low' pressure perfusion of porcine pancreata compared favourably in important biochemical and immunohistochemistry cellular profiles; potentially arguing for an improved method for graft preservation. CONCLUSION: ENPPP will facilitate whole organ preservation to be studied in further detail and avoids use of expensive live animals. ENPPP is reproducible and mimics a "donation after circulatory death" scenario.


Assuntos
Preservação de Órgãos/métodos , Transplante de Pâncreas , Pâncreas/fisiologia , Perfusão/métodos , Transplantes/fisiologia , Animais , Pressão , Suínos , Fatores de Tempo
17.
Chem Commun (Camb) ; 54(40): 5019-5031, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29637207

RESUMO

Thermally robust materials have been of interest since the middle of the past century for use as high temperature structural materials, lubricants, heat transfer fluids and other uses where thermal stability is necessary or desirable. More recently, ionic liquids have been described as 'thermally robust,' with this moniker often originating from their low volatility rather than their innate stability. As many ionic liquids have vanishingly low vapor pressures, the upper limit of their liquid state is commonly considered to be their degradation temperature, frequently reported from TGA measurements. The short duration ramps often used in TGA experiments can significantly overestimate the temperature at which significant degradation begins to occur when the compounds are held isothermal for even a few hours. Here, we review our recent work, and that of colleagues, in developing thermally robust ionic compounds, primarily perarylphosphonium and perarylsulfonium bistriflimide salts, in some of which cation stability exceeds that of the anion. We have used a combination of molecular design, synthesis, and computational modeling to understand the complex tradeoffs involving thermal stability, low melting point and other desirable physicochemical properties.

18.
Small ; 14(14): e1703352, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29484811

RESUMO

In situ photocontrol over shear-thickening of condensed colloidal dispersions is of paramount importance in a wide range of applications including process technology and photorheological fluids. Its development and practicability, however, are hampered by the lack of well-designed photoresponsive systems. Here, a colloidal suspension whose rheological behavior is readily switchable between shear-thinning and shear-thickening using an external light stimulus is reported. This smart colloidal solution contains hybrid raspberry-like colloids prepared by employing cucurbit[8]uril as a supramolecular linker to assemble functional Fe3 O4 nanoparticles onto a silica core. The formed raspberry colloids are photoresponsive and can be reversibly disassembled under UV irradiation.

19.
Phys Chem Chem Phys ; 19(47): 31560-31571, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29165458

RESUMO

A family of mesothermal ionic liquids comprised of tetraarylphosphonium cations and the bis(trifluoromethanesulfonyl)amidate anion are shown to be materials of exceptional thermal stability, enduring (without decomposition) heating in air at 300 °C for three months. It is further established that three specific structural elements - phenoxy, phenacyl, and phenyl sulfonyl - can be present in the cation structures without compromising their thermal stability, and that their incorporation has specific impacts on the melting points of the salts. Most importantly, it is shown that the ability of such a structural component to lower a salt melting point is tied to its ability to lower cation-cation repulsions in the material.

20.
Lancet ; 390(10090): 145-154, 2017 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-28551075

RESUMO

BACKGROUND: England and Wales have one of the highest frequencies of autopsy in the world. Implementation of post-mortem CT (PMCT), enhanced with targeted coronary angiography (PMCTA), in adults to avoid invasive autopsy would have cultural, religious, and potential economic benefits. We aimed to assess the diagnostic accuracy of PMCTA as a first-line technique in post-mortem investigations. METHODS: In this single-centre (Leicester, UK), prospective, controlled study, we selected cases of natural and non-suspicious unnatural death referred to Her Majesty's (HM) Coroners. We excluded cases younger than 18 years, known to have had a transmittable disease, or who weighed more than 125 kg. Each case was assessed by PMCTA, followed by autopsy. Pathologists were masked to the PMCTA findings, unless a potential risk was shown. The primary endpoint was the accuracy of the cause of death diagnosis from PMCTA against a gold standard of autopsy findings, modified by PMCTA findings only if additional substantially incontrovertible findings were identified. FINDINGS: Between Jan 20, 2010, and Sept 13, 2012, we selected 241 cases, for which PMCTA was successful in 204 (85%). Seven cases were excluded from the analysis because of procedural unmasking or no autopsy data, as were 24 cases with a clear diagnosis of traumatic death before investigation; 210 cases were included. In 40 (19%) cases, predictable toxicology or histology testing accessible by PMCT informed the result. PMCTA provided a cause of death in 193 (92%) cases. A major discrepancy with the gold standard was noted in 12 (6%) cases identified by PMCTA, and in nine (5%) cases identified by autopsy (because of specific findings on PMCTA). The frequency of autopsy and PMCTA discrepancies were not significantly different (p=0·65 for major discrepancies and p=0·21 for minor discrepancies). Cause of death given by PMCTA did not overlook clinically significant trauma, occupational lung disease, or reportable disease, and did not significantly affect the overall population data for cause of death (p≥0·31). PMCTA was better at identifying trauma and haemorrhage (p=0·008), whereas autopsy was better at identifying pulmonary thromboembolism (p=0·004). INTERPRETATION: For most sudden natural adult deaths investigated by HM Coroners, PMCTA could be used to avoid invasive autopsy. The gold standard of post-mortem investigations should include both PMCT and invasive autopsy. FUNDING: National Institute for Health Research.


Assuntos
Autopsia/métodos , Morte Súbita/etiologia , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Causas de Morte , Hemorragia Cerebral/diagnóstico por imagem , Angiografia Coronária , Médicos Legistas , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico por imagem , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA