Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39419025

RESUMO

Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53-/- TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1high immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.

2.
Cancer Discov ; 14(9): 1699-1716, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39193992

RESUMO

Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically. Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-myc , Estabilidade de RNA , Ribonucleotídeos , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ribonucleotídeos/metabolismo
4.
iScience ; 26(7): 107059, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360684

RESUMO

To address the limitation associated with degron based systems, we have developed iTAG, a synthetic tag based on IMiDs/CELMoDs mechanism of action that improves and addresses the limitations of both PROTAC and previous IMiDs/CeLMoDs based tags. Using structural and sequence analysis, we systematically explored native and chimeric degron containing domains (DCDs) and evaluated their ability to induce degradation. We identified the optimal chimeric iTAG(DCD23 60aa) that elicits robust degradation of targets across cell types and subcellular localizations without exhibiting the well documented "hook effect" of PROTAC-based systems. We showed that iTAG can also induce target degradation by murine CRBN and enabled the exploration of natural neo-substrates that can be degraded by murine CRBN. Hence, the iTAG system constitutes a versatile tool to degrade targets across the human and murine proteome.

5.
Nat Cell Biol ; 25(4): 528-539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024683

RESUMO

Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear. Here we show that this switch involves a global increase in splicing efficiency coordinated by DNA methyltransferase 3α (DNMT3A), an enzyme typically involved in DNA methylation. Proper activation of murine and human embryonic and haematopoietic stem cells depends on messenger RNA processing, influenced by DNMT3A in response to stimuli. DNMT3A coordinates splicing through recruitment of the core spliceosome protein SF3B1 to RNA polymerase and mRNA. Importantly, the DNA methylation function of DNMT3A is not required and loss of DNMT3A leads to impaired splicing during stem cell turnover. Finally, we identify the spliceosome as a potential therapeutic target in DNMT3A-mutated leukaemias. Together, our results reveal a modality through which DNMT3A and the spliceosome govern exit from the stem state towards differentiation.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Animais , Humanos , Camundongos , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células-Tronco Hematopoéticas/metabolismo
6.
Elife ; 112022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043466

RESUMO

Metastatic breast cancer remains a major cause of cancer-related deaths in women, and there are few effective therapies against this advanced disease. Emerging evidence suggests that key steps of tumor progression and metastasis are controlled by reversible epigenetic mechanisms. Using an in vivo genetic screen, we identified WDR5 as an actionable epigenetic regulator that is required for metastatic progression in models of triple-negative breast cancer. We found that knockdown of WDR5 in breast cancer cells independently impaired their tumorigenic as well as metastatic capabilities. Mechanistically, WDR5 promotes cell growth by increasing ribosomal gene expression and translation efficiency in a KMT2-independent manner. Consistently, pharmacological inhibition or degradation of WDR5 impedes cellular translation rate and the clonogenic ability of breast cancer cells. Furthermore, a combination of WDR5 targeting with mTOR inhibitors leads to potent suppression of translation and proliferation of breast cancer cells. These results reveal novel therapeutic strategies to treat metastatic breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proliferação de Células
7.
Mol Cell ; 81(15): 3048-3064.e9, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216543

RESUMO

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression, and aberrant RBP-RNA interactions can promote cancer progression. Here, we interrogate the function of RBPs in cancer using pooled CRISPR-Cas9 screening and identify 57 RBP candidates with distinct roles in supporting MYC-driven oncogenic pathways. We find that disrupting YTHDF2-dependent mRNA degradation triggers apoptosis in triple-negative breast cancer (TNBC) cells and tumors. eCLIP and m6A sequencing reveal that YTHDF2 interacts with mRNAs encoding proteins in the MAPK pathway that, when stabilized, induce epithelial-to-mesenchymal transition and increase global translation rates. scRibo-STAMP profiling of translating mRNAs reveals unique alterations in the translatome of single cells within YTHDF2-depleted solid tumors, which selectively contribute to endoplasmic reticulum stress-induced apoptosis in TNBC cells. Thus, our work highlights the therapeutic potential of RBPs by uncovering a critical role for YTHDF2 in counteracting the global increase of mRNA synthesis in MYC-driven breast cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a RNA/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Morte Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes myc , Humanos , Camundongos Nus , Camundongos Transgênicos , Biossíntese de Proteínas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Discov ; 11(9): 2200-2215, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33741710

RESUMO

More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Proteínas de Ligação a DNA/genética , Ependimoma/genética , Neoplasias Supratentoriais/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Ependimoma/patologia , Camundongos , Neoplasias Supratentoriais/patologia
9.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450205

RESUMO

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Assuntos
Antivirais/farmacologia , Imunidade/efeitos dos fármacos , Spliceossomos/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Amplificação de Genes/efeitos dos fármacos , Humanos , Íntrons/genética , Camundongos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética
10.
Cancer Res Commun ; 1(3): 178-193, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35156101

RESUMO

Polo-like kinase (PLK) family members play important roles in cell cycle regulation. The founding member PLK1 is oncogenic and preclinically validated as a cancer therapeutic target. Paradoxically, frequent loss of chromosome 5q11-35 which includes PLK2 is observed in basal-like breast cancer. In this study, we found that PLK2 was tumor suppressive in breast cancer, preferentially in basal-like and triple-negative breast cancer (TNBC) subtypes. Knockdown of PLK1 rescued phenotypes induced by PLK2-loss both in vitro and in vivo. We also demonstrated that PLK2 directly interacted with PLK1 at prometaphase through the kinase but not the polo-box domains of PLK2, suggesting PLK2 functioned at least partially through the interaction with PLK1. Furthermore, an improved treatment response was seen in both Plk2-deleted/low mouse preclinical and PDX TNBC models using the PLK1 inhibitor volasertib alone or in combination with carboplatin. Re-expression of PLK2 in an inducible PLK2-null mouse model reduced the therapeutic efficacy of volasertib. In summary, this study delineates the effects of chromosome 5q loss in TNBC that includes PLK2, the relationship between PLK2 and PLK1, and how this may render PLK2-deleted/low tumors more sensitive to PLK1 inhibition in combination with chemotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Genes Supressores de Tumor , Biomarcadores , Proteínas Serina-Treonina Quinases/genética
11.
Cell Chem Biol ; 28(2): 134-147.e14, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33086052

RESUMO

Castration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors. Further optimization resulted in KB-0742, an orally bioavailable, selective CDK9 inhibitor with potent anti-tumor activity in CRPC models. In 22Rv1 cells, KB-0742 rapidly downregulates nascent transcription, preferentially depleting short half-life transcripts and AR-driven oncogenic programs. In vivo, oral administration of KB-0742 significantly reduced tumor growth in CRPC, supporting CDK9 inhibition as a promising therapeutic strategy to target AR dependence in CRPC.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores Androgênicos/genética , Transcrição Gênica/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos/uso terapêutico , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Neoplasias de Próstata Resistentes à Castração/genética , Inibidores de Proteínas Quinases/uso terapêutico
12.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33212010

RESUMO

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Terapia de Alvo Molecular , Proteogenômica , Desaminases APOBEC/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Estudos de Coortes , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Imunoterapia , Metabolômica , Pessoa de Meia-Idade , Mutagênese/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Receptor ErbB-2/metabolismo , Proteína do Retinoblastoma/metabolismo , Microambiente Tumoral/imunologia
13.
Oncogene ; 39(18): 3726-3737, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157212

RESUMO

Lineage selective transcription factors (TFs) are important regulators of tumorigenesis, but their biological functions are often context dependent with undefined epigenetic mechanisms of action. In this study, we uncover a conditional role for the endodermal and pulmonary specifying TF GATA6 in lung adenocarcinoma (LUAD) progression. Impairing Gata6 in genetically engineered mouse models reduces the proliferation and increases the differentiation of Kras mutant LUAD tumors. These effects are influenced by the epithelial cell type that is targeted for transformation and genetic context of Kras-mediated tumor initiation. In LUAD cells derived from surfactant protein C expressing progenitors, we identify multiple genomic loci that are bound by GATA6. Moreover, suppression of Gata6 in these cells significantly alters chromatin accessibility, particularly at distal enhancer elements. Analogous to its paradoxical activity in lung development, GATA6 expression fluctuates during different stages of LUAD progression and can epigenetically control diverse transcriptional programs associated with bone morphogenetic protein signaling, alveolar specification, and tumor suppression. These findings reveal how GATA6 can modulate the chromatin landscape of lung cancer cells to control their proliferation and divergent lineage dependencies during tumor progression.


Assuntos
Adenocarcinoma de Pulmão/genética , Fator de Transcrição GATA6/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/patologia , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Cromatina/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos
14.
Nat Cell Biol ; 22(2): 225-234, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32029897

RESUMO

Energy stress depletes ATP and induces cell death. Here we identify an unexpected inhibitory role of energy stress on ferroptosis, a form of regulated cell death induced by iron-dependent lipid peroxidation. We found that ferroptotic cell death and lipid peroxidation can be inhibited by treatments that induce or mimic energy stress. Inactivation of AMP-activated protein kinase (AMPK), a sensor of cellular energy status, largely abolishes the protective effects of energy stress on ferroptosis in vitro and on ferroptosis-associated renal ischaemia-reperfusion injury in vivo. Cancer cells with high basal AMPK activation are resistant to ferroptosis and AMPK inactivation sensitizes these cells to ferroptosis. Functional and lipidomic analyses further link AMPK regulation of ferroptosis to AMPK-mediated phosphorylation of acetyl-CoA carboxylase and polyunsaturated fatty acid biosynthesis. Our study demonstrates that energy stress inhibits ferroptosis partly through AMPK and reveals an unexpected coupling between ferroptosis and AMPK-mediated energy-stress signalling.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/genética , Ferroptose/genética , Rim/enzimologia , Peroxidação de Lipídeos/genética , Traumatismo por Reperfusão/genética , Células A549 , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Linhagem Celular Tumoral , Cicloexilaminas/farmacologia , Embrião de Mamíferos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Ácidos Graxos Insaturados/biossíntese , Ferroptose/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glucose/deficiência , Glucose/farmacologia , Humanos , Ferro/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Camundongos , Camundongos Transgênicos , Fenilenodiaminas/farmacologia , Fosforilação , Piperazinas/antagonistas & inibidores , Piperazinas/farmacologia , Cultura Primária de Células , Pirazóis/farmacologia , Pirimidinas/farmacologia , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
15.
Cell Rep ; 29(2): 249-257.e8, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597089

RESUMO

Monoclonal antibodies (mAbs) targeting the oncogenic receptor tyrosine kinase ERBB2/HER2, such as Trastuzumab, are the standard of care therapy for breast cancers driven by ERBB2 overexpression and activation. However, a substantial proportion of patients exhibit de novo resistance. Here, by comparing matched Trastuzumab-naive and post-treatment patient samples from a neoadjuvant trial, we link resistance with elevation of H3K27me3, a repressive histone modification catalyzed by polycomb repressor complex 2 (PRC2). In ErbB2+ breast cancer models, PRC2 silences endogenous retroviruses (ERVs) to suppress anti-tumor type-I interferon (IFN) responses. In patients, elevated H3K27me3 in tumor cells following Trastuzumab treatment correlates with suppression of interferon-driven viral defense gene expression signatures and poor response. Using an immunocompetent model, we provide evidence that EZH2 inhibitors promote interferon-driven immune responses that enhance the efficacy of anti-ErbB2 mAbs, suggesting the potential clinical benefit of epigenomic reprogramming by H3K27me3 depletion in Trastuzumab-resistant disease.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Terapia de Alvo Molecular , Receptor ErbB-2/metabolismo , Adulto , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Interferon Tipo I/metabolismo , Metilação , Camundongos , Modelos Biológicos , Complexo Repressor Polycomb 2/metabolismo , Retroelementos/genética , Trastuzumab/uso terapêutico , Regulação para Cima
16.
Nat Cell Biol ; 21(9): 1113-1126, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31451770

RESUMO

Cancer-induced immune responses affect tumour progression and therapeutic response. In multiple murine models and clinical datasets, we identified large variations of neutrophils and macrophages that define 'immune subtypes' of triple-negative breast cancer (TNBC), including neutrophil-enriched (NES) and macrophage-enriched subtypes (MES). Different tumour-intrinsic pathways and mutual regulation between macrophages (or monocytes) and neutrophils contribute to the development of a dichotomous myeloid compartment. MES contains predominantly macrophages that are CCR2-dependent and exhibit variable responses to immune checkpoint blockade (ICB). NES exhibits systemic and local accumulation of immunosuppressive neutrophils (or granulocytic myeloid-derived suppressor cells), is resistant to ICB, and contains a minority of macrophages that seem to be unaffected by CCR2 knockout. A MES-to-NES conversion mediated acquired ICB resistance of initially sensitive MES models. Our results demonstrate diverse myeloid cell frequencies, functionality and potential roles in immunotherapies, and highlight the need to better understand the inter-patient heterogeneity of the myeloid compartment.


Assuntos
Imunoterapia , Células Mieloides/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral/imunologia , Animais , Modelos Animais de Doenças , Feminino , Granulócitos/imunologia , Imunoterapia/métodos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Neutrófilos/imunologia , Neutrófilos/patologia , Neoplasias de Mama Triplo Negativas/patologia
17.
Oncogene ; 38(13): 2436, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510231

RESUMO

Following the publication of the above article, the authors noted an error in Figure 4, panel B. The colours of the localized and mCRPC samples were accidentally switched. The authors have corrected the colour scheme and added a key to the figure. They have also updated the colour scheme of panel C, both bars are now red instead of one red and one blue. The authors wish to apologize for any inconvenience caused.

18.
Oncogene ; 38(7): 913-934, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30194451

RESUMO

The propensity of cancer cells to transition between epithelial and mesenchymal phenotypic states via the epithelial-mesenchymal transition (EMT) program can regulate metastatic processes, cancer progression, and treatment resistance. Transcriptional investigations using reversible models of EMT, revealed the mesenchymal-to-epithelial reverting transition (MErT) to be enriched in clinical samples of metastatic castrate resistant prostate cancer (mCRPC). From this enrichment, a metastasis-derived gene signature was identified that predicted more rapid cancer relapse and reduced survival across multiple human carcinoma types. Additionally, the transcriptional profile of MErT is not a simple mirror image of EMT as tumour cells retain a transcriptional "memory" following a reversible EMT. This memory was also enriched in mCRPC samples. Cumulatively, our studies reveal the transcriptional profile of epithelial-mesenchymal plasticity and highlight the unique transcriptional properties of MErT. Furthermore, our findings provide evidence to support the association of epithelial plasticity with poor clinical outcomes in multiple human carcinoma types.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/mortalidade , Linhagem Celular Tumoral , Intervalo Livre de Doença , Humanos , Masculino , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/classificação , Neoplasias de Próstata Resistentes à Castração/patologia , Taxa de Sobrevida
19.
Cell Rep ; 25(7): 1898-1911.e5, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428356

RESUMO

Down syndrome (DS, trisomy 21) is associated with developmental abnormalities and increased leukemia risk. To reconcile chromatin alterations with transcriptome changes, we performed paired exogenous spike-in normalized RNA and chromatin immunoprecipitation sequencing in DS models. Absolute normalization unmasks global amplification of gene expression associated with trisomy 21. Overexpression of the nucleosome binding protein HMGN1 (encoded on chr21q22) recapitulates transcriptional changes seen with triplication of a Down syndrome critical region on distal chromosome 21, and HMGN1 is necessary for B cell phenotypes in DS models. Absolute exogenous-normalized chromatin immunoprecipitation sequencing (ChIP-Rx) also reveals a global increase in histone H3K27 acetylation caused by HMGN1. Transcriptional amplification downstream of HMGN1 is enriched for stage-specific programs of B cells and B cell acute lymphoblastic leukemia, dependent on the developmental cellular context. These data offer a mechanistic explanation for DS transcriptional patterns and suggest that further study of HMGN1 and RNA amplification in diverse DS phenotypes is warranted.


Assuntos
Síndrome de Down/genética , Proteína HMGN1/genética , Transcrição Gênica , Trissomia/genética , Acetilação , Animais , Linfócitos B/metabolismo , Linhagem Celular , Genoma , Proteína HMGN1/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Genéticos , Nucleossomos/metabolismo , Fenótipo , RNA/genética , Transcriptoma/genética , Regulação para Cima/genética
20.
J Neurosci ; 38(43): 9286-9301, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249792

RESUMO

Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.


Assuntos
Genoma/genética , Neurônios/fisiologia , Interferência de RNA/fisiologia , Análise de Sequência de RNA/métodos , alfa-Sinucleína/genética , Animais , Animais Recém-Nascidos , Drosophila , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Reprodutibilidade dos Testes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA