Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(19): 193803, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804954

RESUMO

We investigate the transmission of vector beams, correlated in their polarization and spatial degrees of freedom, through cold atoms in the presence of a transverse magnetic coupling field. The resulting phase-dependent dynamics allow us to imprint the spatially varying polarization of a vector beam onto atomic spin polarizations, thereby establishing a direct link between optical space-polarization correlations and atomic-state interference. We find that the resulting absorption profiles show interference fringes whose modulation strength is given by the squared concurrence of the vector beam, letting us identify optical concurrence from a single absorption image. We expect impact across a diverse range of applications, including spintronics, quantum memories, metrology, and clocks.

2.
Nat Commun ; 14(1): 8005, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049423

RESUMO

Fluorescence Lifetime Imaging Microscopy in the time domain is typically performed by recording the arrival time of photons either by using electronic time tagging or a gated detector. As such the temporal resolution is limited by the performance of the electronics to 100's of picoseconds. Here, we demonstrate a fluorescence lifetime measurement technique based on photon-bunching statistics with a resolution that is only dependent on the duration of the reference photon or laser pulse, which can readily reach the 1-0.1 picosecond timescale. A range of fluorescent dyes having lifetimes spanning from 1.6 to 7 picoseconds have been here measured with only ~1 s measurement duration. We corroborate the effectiveness of the technique by measuring the Newtonian viscosity of glycerol/water mixtures by means of a molecular rotor having over an order of magnitude variability in lifetime, thus introducing a new method for contact-free nanorheology. Accessing fluorescence lifetime information at such high temporal resolution opens a doorway for a wide range of fluorescent markers to be adopted for studying yet unexplored fast biological processes, as well as fundamental interactions such as lifetime shortening in resonant plasmonic devices.

3.
Phys Rev Lett ; 128(1): 013901, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061491

RESUMO

The superradiant amplification in the scattering from a rotating medium was first elucidated by Sir Roger Penrose over 50 years ago as a means by which particles could gain energy from rotating black holes. Despite this fundamental process being ubiquitous also in wave physics, it has only been observed once experimentally, in a water tank. Here, we measure this amplification for a nonlinear optics experiment in the superfluid regime. In particular, by focusing a weak optical beam carrying orbital angular momentum onto the core of a strong pump vortex beam, negative norm modes are generated and trapped inside the vortex core, allowing for amplification of a reflected beam. Our experiment demonstrates amplified reflection due to a novel form of nonlinear optical four-wave mixing, whose phase-relation coincides with the Zel'dovich-Misner condition for Penrose superradiance in our photon superfluid, and unveil the role played by negative frequency modes in the process.

4.
Sci Rep ; 11(1): 4281, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608609

RESUMO

Systems of interacting charges and fields are ubiquitous in physics. Recently, it has been shown that Hamiltonians derived using different gauges can yield different physical results when matter degrees of freedom are truncated to a few low-lying energy eigenstates. This effect is particularly prominent in the ultra-strong coupling regime. Such ambiguities arise because transformations reshuffle the partition between light and matter degrees of freedom and so level truncation is a gauge dependent approximation. To avoid this gauge ambiguity, we redefine the electromagnetic fields in terms of potentials for which the resulting canonical momenta and Hamiltonian are explicitly unchanged by the gauge choice of this theory. Instead the light/matter partition is assigned by the intuitive choice of separating an electric field between displacement and polarisation contributions. This approach is an attractive choice in typical cavity quantum electrodynamics situations.

5.
Opt Express ; 28(2): 2210-2220, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121916

RESUMO

We provide a statistically robust and accurate framework to measure and track the polarisation state of light employing Hong-Ou-Mandel interference. This is achieved by combining the concepts of maximum likelihood estimation and Fisher information applied to photon detection events. Such an approach ensures that the Cramér-Rao bound is saturated and changes to the polarisation state are established in an optimal manner. Using this method, we show that changes in the linear polarisation state can be measured with 0.6 arcminute precision (0.01 degrees).

6.
Phys Rev Lett ; 121(13): 133903, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312099

RESUMO

We present experimental evidence of photon droplets in an attractive (focusing) nonlocal nonlinear medium. Photon droplets are self-bound, finite-sized states of light that are robust to size and shape perturbations due to a balance of competing attractive and repulsive forces. It has recently been shown theoretically, via a multipole expansion of the nonlocal nonlinearity, that the self-bound state arises due to competition between the s-wave and d-wave nonlinear terms, together with diffraction. The theoretical photon droplet framework encompasses both a solitonlike stationary ground state and the nonsolitonlike dynamics that ensue when the system is displaced from equilibrium, i.e., driven into an excited state. We present numerics and experiments supporting the existence of these photon droplet states and measurements of the dynamical evolution of the photon droplet orbital angular momentum.

7.
Nat Commun ; 7: 13492, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841261

RESUMO

Many gravitational phenomena that lie at the core of our understanding of the Universe have not yet been directly observed. An example in this sense is the boson star that has been proposed as an alternative to some compact objects currently interpreted as being black holes. In the weak field limit, these stars are governed by the Newton-Schrodinger equation. Here we present an optical system that, under appropriate conditions, identically reproduces such equation in two dimensions. A rotating boson star is experimentally and numerically modelled by an optical beam propagating through a medium with a positive thermal nonlinearity and is shown to oscillate in time while also stable up to relatively high densities. For higher densities, instabilities lead to an apparent breakup of the star, yet coherence across the whole structure is maintained. These results show that optical analogues can be used to shed new light on inaccessible gravitational objects.

8.
Opt Lett ; 39(18): 5345-7, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466267

RESUMO

We report the experimental observation of all-optical modulation of light in a graphene film. The graphene film is scanned across a standing wave formed by two counter-propagating laser beams in a Sagnac interferometer. Through a coherent absorption process the on-axis transmission is modulated with close to 80% efficiency. Furthermore, we observe modulation of the scattered energy by mapping the off-axis scattered optical signal: scattering is minimized at a node of the standing wave pattern and maximized at an antinode. The results highlight the possibility to switch and modulate any given optical interaction with deeply sub-wavelength films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA