Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Genet ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379762

RESUMO

Type 2 diabetes (T2D) genome-wide association studies (GWASs) often overlook rare variants as a result of previous imputation panels' limitations and scarce whole-genome sequencing (WGS) data. We used TOPMed imputation and WGS to conduct the largest T2D GWAS meta-analysis involving 51,256 cases of T2D and 370,487 controls, targeting variants with a minor allele frequency as low as 5 × 10-5. We identified 12 new variants, including a rare African/African American-enriched enhancer variant near the LEP gene (rs147287548), associated with fourfold increased T2D risk. We also identified a rare missense variant in HNF4A (p.Arg114Trp), associated with eightfold increased T2D risk, previously reported in maturity-onset diabetes of the young with reduced penetrance, but observed here in a T2D GWAS. We further leveraged these data to analyze 1,634 ClinVar variants in 22 genes related to monogenic diabetes, identifying two additional rare variants in HNF1A and GCK associated with fivefold and eightfold increased T2D risk, respectively, the effects of which were modified by the individual's polygenic risk score. For 21% of the variants with conflicting interpretations or uncertain significance in ClinVar, we provided support of being benign based on their lack of association with T2D. Our work provides a framework for using rare variant GWASs to identify large-effect variants and assess variant pathogenicity in monogenic diabetes genes.

2.
medRxiv ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39314967

RESUMO

Discovery and translation of gene-environment interactions (GxEs) influencing clinical outcomes is limited by low statistical power and poor mechanistic understanding. Molecular omics data may help address these limitations, but their incorporation into GxE testing requires principled analytic approaches. We focused on genetic modification of the established mechanistic link between dietary long-chain omega-3 fatty acid (dN3FA) intake, plasma N3FA (pN3FA), and chronic inflammation as measured by high sensitivity CRP (hsCRP). We considered an approach that decomposes the overall genetic effect modification into components upstream and downstream of a molecular mediator to increase the potential to discover gene-N3FA interactions. Simulations demonstrated improved power of the upstream and downstream tests compared to the standard approach when the molecular mediator for many biologically plausible scenarios. The approach was applied in the UK Biobank (N = 188,700) with regression models that used measures of dN3FA (based on fish and fish oil intake), pN3FA (% of total fatty acids measured by nuclear magnetic resonance), and hsCRP. Mediation analysis showed that pN3FA fully mediated the dN3FA-hsCRP main effect relationship. Next, we separately tested modification of the dN3FA-hsCRP ("standard"), dN3FA-pN3FA ("upstream"), and pN3FA-hsCRP ("downstream") associations. The known FADS1-3 locus variant rs174535 reached p = 1.6×10-12 in the upstream discovery analysis, with no signal in the downstream analysis (p = 0.94). It would not have been prioritized based on a naïve analysis with dN3FA exposure and hsCRP outcome (p = 0.097), indicating the value of the decomposition approach. Gene-level enrichment testing of the genome-wide results further prioritized two genes from the downstream analysis, CBLL1 and MICA, with links to immune cell counts and function. In summary, a molecular mediator-focused interaction testing approach enhanced statistical power to identify GxEs while homing in on relevant sub-components of the dN3FA-hsCRP pathway.

3.
Res Sq ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39070651

RESUMO

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes. Investigating these genes' functional implications shed light on neurological, thyroidal, bone metabolism, and hematopoietic pathways that necessitate future investigation for blood pressure management that caters to sleep health lifestyle. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausible nature of distinct influences of both sleep duration extremes in cardiovascular health. Several of our loci are specific towards a particular population background or sex, emphasizing the importance of addressing heterogeneity entangled in gene-environment interactions, when considering precision medicine design approaches for blood pressure management.

4.
PLoS Genet ; 20(7): e1011288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990837

RESUMO

We examined the associations of vegetarianism with metabolic biomarkers using traditional and genetic epidemiology. First, we addressed inconsistencies in self-reported vegetarianism among UK Biobank participants by utilizing data from two dietary surveys to find a cohort of strict European vegetarians (N = 2,312). Vegetarians were matched 1:4 with nonvegetarians for non-genetic association analyses, revealing significant effects of vegetarianism in 15 of 30 biomarkers. Cholesterol measures plus vitamin D were significantly lower in vegetarians, while triglycerides were higher. A genome-wide association study revealed no genome-wide significant (GWS; 5×10-8) associations with vegetarian behavior. We performed genome-wide gene-vegetarianism interaction analyses for the biomarkers, and detected a GWS interaction impacting calcium at rs72952628 (P = 4.47×10-8). rs72952628 is in MMAA, a B12 metabolic pathway gene; B12 has major deficiency potential in vegetarians. Gene-based interaction tests revealed two significant genes, RNF168 in testosterone (P = 1.45×10-6) and DOCK4 in estimated glomerular filtration rate (eGFR) (P = 6.76×10-7), which have previously been associated with testicular and renal traits, respectively. These nutrigenetic findings indicate genotype can modify the associations between vegetarianism and health outcomes.


Assuntos
Biomarcadores , Cálcio , Dieta Vegetariana , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular , Testosterona , Humanos , Masculino , Taxa de Filtração Glomerular/genética , Testosterona/sangue , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Cálcio/metabolismo , Polimorfismo de Nucleotídeo Único , Vegetarianos , Idoso , Vitamina D/sangue , Adulto , Ubiquitina-Proteína Ligases/genética
6.
Am J Hum Genet ; 111(4): 626-635, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579668

RESUMO

Despite the importance of gene-environment interactions (GxEs) in improving and operationalizing genetic discovery, interpretation of any GxEs that are discovered can be surprisingly difficult. There are many potential biological and statistical explanations for a statistically significant finding and, likewise, it is not always clear what can be claimed based on a null result. A better understanding of the possible underlying mechanisms leading to a detected GxE can help investigators decide which are and which are not relevant to their hypothesis. Here, we provide a detailed explanation of five "phenomena," or data-generating mechanisms, that can lead to nonzero interaction estimates, as well as a discussion of specific instances in which they might be relevant. We hope that, given this framework, investigators can design more targeted experiments and provide cleaner interpretations of the associated results.


Assuntos
Interação Gene-Ambiente , Humanos
7.
Nat Med ; 30(4): 1065-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443691

RESUMO

Type 2 diabetes (T2D) is a multifactorial disease with substantial genetic risk, for which the underlying biological mechanisms are not fully understood. In this study, we identified multi-ancestry T2D genetic clusters by analyzing genetic data from diverse populations in 37 published T2D genome-wide association studies representing more than 1.4 million individuals. We implemented soft clustering with 650 T2D-associated genetic variants and 110 T2D-related traits, capturing known and novel T2D clusters with distinct cardiometabolic trait associations across two independent biobanks representing diverse genetic ancestral populations (African, n = 21,906; Admixed American, n = 14,410; East Asian, n =2,422; European, n = 90,093; and South Asian, n = 1,262). The 12 genetic clusters were enriched for specific single-cell regulatory regions. Several of the polygenic scores derived from the clusters differed in distribution among ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a body mass index (BMI) of 30 kg m-2 in the European subpopulation and 24.2 (22.9-25.5) kg m-2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg m-2 in the East Asian group. Thus, these multi-ancestry T2D genetic clusters encompass a broader range of biological mechanisms and provide preliminary insights to explain ancestry-associated differences in T2D risk profiles.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Fenótipo , Herança Multifatorial/genética , Predisposição Genética para Doença/genética
8.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496537

RESUMO

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.

9.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38313294

RESUMO

Large-scale gene-environment interaction (GxE) discovery efforts often involve compromises in the definition of outcomes and choice of covariates for the sake of data harmonization and statistical power. Consequently, refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C). This GxE was originally identified by Kilpeläinen et al., with the strongest cohort-specific signal coming from the Women's Genome Health Study (WGHS). We thus explored this GxE further in the WGHS (N = 23,294), with follow-up in the UK Biobank (UKB; N = 281,380), and the Multi-Ethnic Study of Atherosclerosis (MESA; N = 4,587). Self-reported PA (MET-hrs/wk), genotypes at rs295849 (nearest gene: LHX1), and NMR metabolomics data were available in all three cohorts. As originally reported, minor allele carriers of rs295849 in WGHS had a stronger positive association between PA and HDL-C (pint = 0.002). When testing a range of NMR metabolites (primarily lipoprotein and lipid subfractions) to refine the HDL-C outcome, we found a stronger interaction effect on medium-sized HDL particle concentrations (M-HDL-P; pint = 1.0×10-4) than HDL-C. Meta-regression revealed a systematically larger interaction effect in cohorts from the original meta-analysis with a greater fraction of women (p = 0.018). In the UKB, GxE effects were stronger both in women and using M-HDL-P as the outcome. In MESA, the primary interaction for HDL-C showed nominal significance (pint = 0.013), but without clear differences by sex and with a greater magnitude using large, rather than medium, HDL-P as an outcome. Towards reconciling these observations, further exploration leveraging NMR platform-specific HDL subfraction diameter annotations revealed modest agreement across all cohorts in the interaction affecting medium-to-large particles. Taken together, our work provides additional insights into a specific known gene-PA interaction while illustrating the importance of phenotype and model refinement towards understanding and replicating GxEs.

10.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039147

RESUMO

MOTIVATION: statistics from genome-wide association studies enable many valuable downstream analyses that are more efficient than individual-level data analysis while also reducing privacy concerns. As growing sample sizes enable better-powered analysis of gene-environment interactions, there is a need for gene-environment interaction-specific methods that manipulate and use summary statistics. RESULTS: We introduce two tools to facilitate such analysis, with a focus on statistical models containing multiple gene-exposure and/or gene-covariate interaction terms. REGEM (RE-analysis of GEM summary statistics) uses summary statistics from a single, multi-exposure genome-wide interaction study to derive analogous sets of summary statistics with arbitrary sets of exposures and interaction covariate adjustments. METAGEM (META-analysis of GEM summary statistics) extends current fixed-effects meta-analysis models to incorporate multiple exposures from multiple studies. We demonstrate the value and efficiency of these tools by exploring alternative methods of accounting for ancestry-related population stratification in genome-wide interaction study in the UK Biobank as well as by conducting a multi-exposure genome-wide interaction study meta-analysis in cohorts from the diabetes-focused ProDiGY consortium. These programs help to maximize the value of summary statistics from diverse and complex gene-environment interaction studies. AVAILABILITY AND IMPLEMENTATION: REGEM and METAGEM are open-source projects freely available at https://github.com/large-scale-gxe-methods/REGEM and https://github.com/large-scale-gxe-methods/METAGEM.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Modelos Estatísticos , Tamanho da Amostra , Interpretação Estatística de Dados , Polimorfismo de Nucleotídeo Único , Fenótipo
11.
Circ Genom Precis Med ; 16(6): e004176, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014529

RESUMO

BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of P<1.6×10-4, we identified 3 genes (ATP1B1, ARVCF, and LIPG) associated with CAC and 2 genes (ABCG8 and EIF2B2) associated with carotid intima-media thickness and carotid plaque, respectively, through gene-based rare variant set analysis. Both ATP1B1 and ARVCF also had significantly different associations for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis. CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Espessura Intima-Media Carotídea , Fatores de Risco , Aterosclerose/genética , Genômica
12.
medRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808701

RESUMO

We meta-analyzed array data imputed with the TOPMed reference panel and whole-genome sequence (WGS) datasets and performed the largest, rare variant (minor allele frequency as low as 5×10-5) GWAS meta-analysis of type 2 diabetes (T2D) comprising 51,256 cases and 370,487 controls. We identified 52 novel variants at genome-wide significance (p<5 × 10-8), including 8 novel variants that were either rare or ancestry-specific. Among them, we identified a rare missense variant in HNF4A p.Arg114Trp (OR=8.2, 95% confidence interval [CI]=4.6-14.0, p = 1.08×10-13), previously reported as a variant implicated in Maturity Onset Diabetes of the Young (MODY) with incomplete penetrance. We demonstrated that the diabetes risk in carriers of this variant was modulated by a T2D common variant polygenic risk score (cvPRS) (carriers in the top PRS tertile [OR=18.3, 95%CI=7.2-46.9, p=1.2×10-9] vs carriers in the bottom PRS tertile [OR=2.6, 95% CI=0.97-7.09, p = 0.06]. Association results identified eight variants of intermediate penetrance (OR>5) in monogenic diabetes (MD), which in aggregate as a rare variant PRS were associated with T2D in an independent WGS dataset (OR=4.7, 95% CI=1.86-11.77], p = 0.001). Our data also provided support evidence for 21% of the variants reported in ClinVar in these MD genes as benign based on lack of association with T2D. Our work provides a framework for using rare variant imputation and WGS analyses in large-scale population-based association studies to identify large-effect rare variants and provide evidence for informing variant pathogenicity.

13.
medRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808749

RESUMO

We identified genetic subtypes of type 2 diabetes (T2D) by analyzing genetic data from diverse groups, including non-European populations. We implemented soft clustering with 650 T2D-associated genetic variants, capturing known and novel T2D subtypes with distinct cardiometabolic trait associations. The twelve genetic clusters were distinctively enriched for single-cell regulatory regions. Polygenic scores derived from the clusters differed in distribution between ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a BMI of 30 kg/m2 in the European subpopulation and 24.2 (22.9-25.5) kg/m2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg/m2 in the East Asian group, explaining about 75% of the difference in BMI thresholds. Thus, these multi-ancestry T2D genetic subtypes encompass a broader range of biological mechanisms and help explain ancestry-associated differences in T2D risk profiles.

14.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886436

RESUMO

We identified genetic subtypes of type 2 diabetes (T2D) by analyzing genetic data from diverse groups, including non-European populations. We implemented soft clustering with 650 T2D-associated genetic variants, capturing known and novel T2D subtypes with distinct cardiometabolic trait associations. The twelve genetic clusters were distinctively enriched for single-cell regulatory regions. Polygenic scores derived from the clusters differed in distribution between ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a BMI of 30 kg/m2 in the European subpopulation and 24.2 (22.9-25.5) kg/m2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg/m2 in the East Asian group, explaining about 75% of the difference in BMI thresholds. Thus, these multi-ancestry T2D genetic subtypes encompass a broader range of biological mechanisms and help explain ancestry-associated differences in T2D risk profiles.

15.
Res Sq ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790568

RESUMO

Hyperinsulinemia is a complex and heterogeneous phenotype that characterizes molecular alterations that precede the development of type 2 diabetes (T2D). It results from a complex combination of molecular processes, including insulin secretion and insulin sensitivity, that differ between individuals. To better understand the physiology of hyperinsulinemia and ultimately T2D, we implemented a genetic approach grouping fasting insulin (FI)-associated genetic variants based on their molecular and phenotypic similarities. We identified seven distinctive genetic clusters representing different physiologic mechanisms leading to rising FI levels, ranging from clusters of variants with effects on increased FI, but without increased risk of T2D (non-diabetogenic hyperinsulinemia), to clusters of variants that increase FI and T2D risk with demonstrated strong effects on body fat distribution, liver, lipid, and inflammatory processes (diabetogenic hyperinsulinemia). We generated cluster-specific polygenic scores in 1,104,258 individuals from five multi-ancestry cohorts to show that the clusters differed in associations with cardiometabolic traits. Among clusters characterized by non-diabetogenic hyperinsulinemia, there was both increased and decreased risk of coronary artery disease despite the non-increased risk of T2D. Similarly, the clusters characterized by diabetogenic hyperinsulinemia were associated with an increased risk of T2D, yet had differing risks of cardiovascular conditions, including coronary artery disease, myocardial infarction, and stroke. The strongest cluster-T2D associations were observed with the same direction of effect in non-Hispanic Black, Hispanic, non-Hispanic White, and non-Hispanic East Asian populations. These genetic clusters provide important insights into granular metabolic processes underlying the physiology of hyperinsulinemia, notably highlighting specific processes that decouple increasing FI levels from T2D and cardiovascular risk. Our findings suggest that increasing FI levels are not invariably associated with adverse cardiometabolic outcomes.

16.
Diabetes Care ; 46(11): 1978-1985, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756531

RESUMO

OBJECTIVE: Clonal hematopoiesis of indeterminate potential (CHIP) is an aging-related accumulation of somatic mutations in hematopoietic stem cells, leading to clonal expansion. CHIP presence has been implicated in atherosclerotic coronary heart disease (CHD) and all-cause mortality, but its association with incident type 2 diabetes (T2D) is unknown. We hypothesized that CHIP is associated with elevated risk of T2D. RESEARCH DESIGN AND METHODS: CHIP was derived from whole-genome sequencing of blood DNA in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) prospective cohorts. We performed analysis for 17,637 participants from six cohorts, without prior T2D, cardiovascular disease, or cancer. We evaluated baseline CHIP versus no CHIP prevalence with incident T2D, including associations with DNMT3A, TET2, ASXL1, JAK2, and TP53 variants. We estimated multivariable-adjusted hazard ratios (HRs) and 95% CIs with adjustment for age, sex, BMI, smoking, alcohol, education, self-reported race/ethnicity, and combined cohorts' estimates via fixed-effects meta-analysis. RESULTS: Mean (SD) age was 63.4 (11.5) years, 76% were female, and CHIP prevalence was 6.0% (n = 1,055) at baseline. T2D was diagnosed in n = 2,467 over mean follow-up of 9.8 years. Participants with CHIP had 23% (CI 1.04, 1.45) higher risk of T2D than those with no CHIP. Specifically, higher risk was for TET2 (HR 1.48; CI 1.05, 2.08) and ASXL1 (HR 1.76; CI 1.03, 2.99) mutations; DNMT3A was nonsignificant (HR 1.15; CI 0.93, 1.43). Statistical power was limited for JAK2 and TP53 analyses. CONCLUSIONS: CHIP was associated with higher incidence of T2D. CHIP mutations located on genes implicated in CHD and mortality were also related to T2D, suggesting shared aging-related pathology.


Assuntos
Doença das Coronárias , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Hematopoiese Clonal/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Estudos Prospectivos , Hematopoese/genética , Evolução Clonal , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Mutação
17.
Diabetologia ; 66(12): 2275-2282, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37728730

RESUMO

AIMS/HYPOTHESIS: We sought to quantify the relationship between morning, afternoon or evening physical activity and consistency (e.g. routine) and risk of type 2 diabetes. METHODS: A cohort of 93,095 UK Biobank participants (mean age 62 years) without a history of type 2 diabetes wore a wrist-worn accelerometer for 1 week. We converted accelerometer information to estimate metabolic equivalent of task (MET), summing MET h of total physical activity completed within three intra-day time segments (morning, afternoon and evening). We quantified physical activity consistency as the SD of participants' daily total physical activity. We ultimately associated each of the following with incident type 2 diabetes: (1) morning, afternoon or evening 'time-segmented' MET h per week; and (2) consistency. We also considered moderate-to-vigorous physical activity (MVPA) and vigorous physical activity (VPA) in association with type 2 diabetes incidence. RESULTS: When considering MET as the physical activity measure, we observed protective associations of morning (HR 0.90 [95% CI 0.86, 0.93], p=7×10-8) and afternoon (HR 0.91 [95% CI 0.87, 0.95], p=1×10-5) but did not have evidence for evening physical activity (HR 0.95 [95% CI 0.90, 1.00], p=0.07) with type 2 diabetes. There was no difference between MET-measured morning and afternoon physical activity. Our substitution model highlighted the importance of adjusting for lifestyle factors (e.g. sleep time and diet); the effect of a substitution between afternoon and evening physical activity was attenuated after adjustment for lifestyle variables. Consistency of MET-measured physical activity was not associated with type 2 diabetes (p=0.07). MVPA and VPA were associated with decreased risk for type 2 diabetes at all times of the day. CONCLUSIONS/INTERPRETATION: Total metabolic equivalents of physical activity in the morning and afternoon had a protective effect on diabetes risk and evening activity was not associated with diabetes. Consistency of physical activity did not play a role in decreasing risk for diabetes. Vigorous activity is associated with lower risk no matter the time of day of activity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/epidemiologia , Estudos de Coortes , Bancos de Espécimes Biológicos , Exercício Físico , Acelerometria , Reino Unido/epidemiologia
19.
Diabetes ; 72(5): 653-665, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791419

RESUMO

Few studies have demonstrated reproducible gene-diet interactions (GDIs) impacting metabolic disease risk factors, likely due in part to measurement error in dietary intake estimation and insufficient capture of rare genetic variation. We aimed to identify GDIs across the genetic frequency spectrum impacting the macronutrient-glycemia relationship in genetically and culturally diverse cohorts. We analyzed 33,187 participants free of diabetes from 10 National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program cohorts with whole-genome sequencing, self-reported diet, and glycemic trait data. We fit cohort-specific, multivariable-adjusted linear mixed models for the effect of diet, modeled as an isocaloric substitution of carbohydrate for fat, and its interactions with common and rare variants genome-wide. In main effect meta-analyses, participants consuming more carbohydrate had modestly lower glycemic trait values (e.g., for glycated hemoglobin [HbA1c], -0.013% HbA1c/250 kcal substitution). In GDI meta-analyses, a common African ancestry-enriched variant (rs79762542) reached study-wide significance and replicated in the UK Biobank cohort, indicating a negative carbohydrate-HbA1c association among major allele homozygotes only. Simulations revealed that >150,000 samples may be necessary to identify similar macronutrient GDIs under realistic assumptions about effect size and measurement error. These results generate hypotheses for further exploration of modifiable metabolic disease risk in additional cohorts with African ancestry. ARTICLE HIGHLIGHTS: We aimed to identify genetic modifiers of the dietary macronutrient-glycemia relationship using whole-genome sequence data from 10 Trans-Omics for Precision Medicine program cohorts. Substitution models indicated a modest reduction in glycemia associated with an increase in dietary carbohydrate at the expense of fat. Genome-wide interaction analysis identified one African ancestry-enriched variant near the FRAS1 gene that may interact with macronutrient intake to influence hemoglobin A1c. Simulation-based power calculations accounting for measurement error suggested that substantially larger sample sizes may be necessary to discover further gene-macronutrient interactions.


Assuntos
Diabetes Mellitus , Dieta , Humanos , Hemoglobinas Glicadas/genética , Diabetes Mellitus/genética , Ingestão de Alimentos , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Estudo de Associação Genômica Ampla
20.
Diabetologia ; 66(3): 495-507, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36538063

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is highly polygenic and influenced by multiple biological pathways. Rapid expansion in the number of type 2 diabetes loci can be leveraged to identify such pathways. METHODS: We developed a high-throughput pipeline to enable clustering of type 2 diabetes loci based on variant-trait associations. Our pipeline extracted summary statistics from genome-wide association studies (GWAS) for type 2 diabetes and related traits to generate a matrix of 323 variants × 64 trait associations and applied Bayesian non-negative matrix factorisation (bNMF) to identify genetic components of type 2 diabetes. Epigenomic enrichment analysis was performed in 28 cell types and single pancreatic cells. We generated cluster-specific polygenic scores and performed regression analysis in an independent cohort (N=25,419) to assess for clinical relevance. RESULTS: We identified ten clusters of genetic loci, recapturing the five from our prior analysis as well as novel clusters related to beta cell dysfunction, pronounced insulin secretion, and levels of alkaline phosphatase, lipoprotein A and sex hormone-binding globulin. Four clusters related to mechanisms of insulin deficiency, five to insulin resistance and one had an unclear mechanism. The clusters displayed tissue-specific epigenomic enrichment, notably with the two beta cell clusters differentially enriched in functional and stressed pancreatic beta cell states. Additionally, cluster-specific polygenic scores were differentially associated with patient clinical characteristics and outcomes. The pipeline was applied to coronary artery disease and chronic kidney disease, identifying multiple overlapping clusters with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Our approach stratifies type 2 diabetes loci into physiologically interpretable genetic clusters associated with distinct tissues and clinical outcomes. The pipeline allows for efficient updating as additional GWAS become available and can be readily applied to other conditions, facilitating clinical translation of GWAS findings. Software to perform this clustering pipeline is freely available.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Teorema de Bayes , Análise por Conglomerados , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA