Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Sci Immunol ; 9(95): eadj7970, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701193

RESUMO

Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.


Assuntos
Antígenos B7 , Células Matadoras Naturais , Linfócitos T , Humanos , Células Matadoras Naturais/imunologia , Animais , Camundongos , Antígenos B7/imunologia , Linfócitos T/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Ativação Linfocitária/imunologia , Feminino , Neoplasias Esofágicas/imunologia
2.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571421

RESUMO

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Assuntos
Neoplasias , Humanos , Neoplasias/genética
3.
Adv Sci (Weinh) ; 11(17): e2307263, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441406

RESUMO

Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.


Assuntos
Apoptose , Biomarcadores Tumorais , Ferroptose , Ferroptose/genética , Humanos , Animais , Camundongos , Apoptose/genética , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Biomarcadores/metabolismo
4.
Bioinform Adv ; 4(1): vbae031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476298

RESUMO

Motivation: BigWig files serve as essential inputs in epigenomic data visualization. However, current R packages for visualizing these files are limited, slow, and burdened by numerous dependencies. Results: We introduce trackplot, a minimal R script designed for the rapid generation of integrative genomics viewer (IGV) style track plots, profile plots, and heatmaps from bigWig files. This script offers speed, owing to its reliance on bwtool, resulting in performance gains of several magnitudes compared to equivalent packages. The script is lightweight, requiring only the data.table and bwtool packages as primary dependencies. Notably, the plots are generated in base R graphics, eliminating the need for additional packages. trackplot queries the University of California Santa Cruz (UCSC) genome browser for gene models thereby enhancing the reproducibility of analyses. The script extends its support to general transfer format (GTF) further enhancing its versatility. This tool addresses the gaps in existing bigWig visualization approaches by offering speed, simplicity, and minimal dependencies, thereby presenting a valuable asset to researchers in the fields of epigenomics. Availability and implementation: trackplot is implemented in R is made available under MIT license at https://github.com/PoisonAlien/trackplot.

5.
J Clin Endocrinol Metab ; 109(2): 471-482, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37647861

RESUMO

CONTEXT: Sexual dimorphism has direct consequences on the incidence and survival of cancer. Early and accurate diagnosis is crucial to improve prognosis. OBJECTIVE: This work aimed to characterized the influence of sex and adrenal asymmetry on the emergence of adrenal tumors. METHODS: We conducted a multicenter, observational study involving 8037 patients with adrenal tumors, including adrenocortical carcinoma (ACC), aldosterone-producing adenoma (APA), cortisol-secreting adrenocortical adenomas (CSAs), non-aldosterone-producing adrenal cortical adenoma (NAPACA), pheochromocytoma (PCC), and neuroblastoma (NB), and investigated tumor lateralization according to sex. Human adrenal tissues (n = 20) were analyzed with a multiomics approach that allows determination of gene expression, catecholamine, and steroid contents in a single sample. In addition, we performed a literature review of computed tomography and magnetic resonance imaging-based studies examining adrenal gland size. RESULTS: ACC (n = 1858); CSA (n = 68), NAPACA (n = 2174), and PCC (n = 1824) were more common in females than in males (female-to-male ratio: 1.1:1-3.8:1), whereas NBs (n = 2320) and APAs (n = 228) were less prevalent in females (0.8:1). ACC, APA, CSA, NAPACA, and NB occurred more frequently in the left than in the right adrenal (left-to-right ratio: 1.1:1-1.8:1), whereas PCC arose more often in the right than in the left adrenal (0.8:1). In both sexes, the left adrenal was larger than the right adrenal; females have smaller adrenals than males. CONCLUSION: Adrenal asymmetry in both sexes may be related to the pathogenesis of adrenal tumors and should be considered during the diagnosis of these tumors.


Assuntos
Neoplasias do Córtex Suprarrenal , Neoplasias das Glândulas Suprarrenais , Adenoma Adrenocortical , Carcinoma Adrenocortical , Feocromocitoma , Feminino , Humanos , Masculino , Corticosteroides , Neoplasias do Córtex Suprarrenal/genética , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/metabolismo , Adenoma Adrenocortical/metabolismo , Aldosterona/metabolismo , Feocromocitoma/metabolismo , Caracteres Sexuais
6.
Genome Biol ; 24(1): 177, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528411

RESUMO

BACKGROUND: RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial. RESULTS: We produced the first systematic evaluation of deconvolution methods on datasets with either known or scnRNA-seq-estimated compositions. Our analyses revealed biases that are common to scnRNA-seq 10X Genomics assays and illustrated the importance of accurate and properly controlled data preprocessing and method selection and optimization. Moreover, our results suggested that concurrent RNA-seq and scnRNA-seq profiles can help improve the accuracy of both scnRNA-seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed method, Single-cell RNA Quantity Informed Deconvolution (SQUID), which combines RNA-seq transformation and dampened weighted least-squares deconvolution approaches, consistently outperformed other methods in predicting the composition of cell mixtures and tissue samples. CONCLUSIONS: We showed that analysis of concurrent RNA-seq and scnRNA-seq profiles with SQUID can produce accurate cell-type abundance estimates and that this accuracy improvement was necessary for identifying outcomes-predictive cancer cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These results suggest that deconvolution accuracy improvements are vital to enabling its applications in the life sciences.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Criança , Humanos , RNA-Seq , Perfilação da Expressão Gênica/métodos , RNA Interferente Pequeno , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
7.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524526

RESUMO

Among glucocorticoids (GCs), dexamethasone (Dex) is widely used in treatment of multiple myelomas. However, despite a definite benefit, all patients relapse. Moreover, the molecular basis of glucocorticoid efficacy remains elusive. To determine genomic response to Dex in myeloma cells, we generated bulk and single-cell multi-omics data and high-resolution contact maps of active enhancers and target genes. We show that a minority of glucocorticoid receptor-binding sites are associated with enhancer activity gains, increased interaction loops, and transcriptional activity. We identified and characterized a predominant enhancer enriched in cohesin (RAD21) and more accessible upon Dex exposure. Analysis of four gene-specific networks revealed the importance of the CTCF-cohesin couple and the synchronization of regulatory sequence openings for efficient transcription in response to Dex. Notably, these epigenomic changes are associated with cell-to-cell transcriptional heterogeneity, in particular, lineage-specific genes. As consequences, BCL2L11-encoding BIM critical for Dex-induced apoptosis and CXCR4 protective from chemotherapy-induced apoptosis are rather up-regulated in different cells. In summary, our work provides new insights into the molecular mechanisms involved in Dex escape.


Assuntos
Dexametasona , Mieloma Múltiplo , Humanos , Dexametasona/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia , Glucocorticoides , Apoptose , Receptores de Glucocorticoides/genética
8.
Front Endocrinol (Lausanne) ; 14: 1022192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361539

RESUMO

Pediatric neural crest-derived adrenal neoplasms include neuroblastoma and pheochromocytoma. Both entities are associated with a high degree of clinical heterogeneity, varying from spontaneous regression to malignant disease with poor outcome. Increased expression and stabilization of HIF2α appears to contribute to a more aggressive and undifferentiated phenotype in both adrenal neoplasms, whereas MYCN amplification is a valuable prognostic marker in neuroblastoma. The present review focuses on HIF- and MYC signaling in both neoplasms and discusses the interaction of associated pathways during neural crest and adrenal development as well as potential consequences on tumorigenesis. Emerging single-cell methods together with epigenetic and transcriptomic analyses provide further insights into the importance of a tight regulation of HIF and MYC signaling pathways during adrenal development and tumorigenesis. In this context, increased attention to HIF-MYC/MAX interactions may also provide new therapeutic options for these pediatric adrenal neoplasms.


Assuntos
Neoplasias das Glândulas Suprarrenais , Neuroblastoma , Humanos , Criança , Proteínas Proto-Oncogênicas c-myc/metabolismo , Crista Neural/metabolismo , Crista Neural/patologia , Transdução de Sinais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neuroblastoma/metabolismo , Carcinogênese/metabolismo
9.
Nat Genet ; 55(4): 619-630, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973454

RESUMO

Neuroblastoma, the most frequent solid tumor in infants, shows very diverse outcomes from spontaneous regression to fatal disease. When these different tumors originate and how they evolve are not known. Here we quantify the somatic evolution of neuroblastoma by deep whole-genome sequencing, molecular clock analysis and population-genetic modeling in a comprehensive cohort covering all subtypes. We find that tumors across the entire clinical spectrum begin to develop via aberrant mitoses as early as the first trimester of pregnancy. Neuroblastomas with favorable prognosis expand clonally after short evolution, whereas aggressive neuroblastomas show prolonged evolution during which they acquire telomere maintenance mechanisms. The initial aneuploidization events condition subsequent evolution, with aggressive neuroblastoma exhibiting early genomic instability. We find in the discovery cohort (n = 100), and validate in an independent cohort (n = 86), that the duration of evolution is an accurate predictor of outcome. Thus, insight into neuroblastoma evolution may prospectively guide treatment decisions.


Assuntos
Neuroblastoma , Lactente , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Prognóstico , Sequenciamento Completo do Genoma
11.
Br J Cancer ; 128(8): 1559-1571, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807339

RESUMO

BACKGROUND: Genomic alterations of the anaplastic lymphoma kinase gene (ALK) occur recurrently in neuroblastoma, a pediatric malignancy of the sympathetic nervous system. However, information on their development over time has remained sparse. METHODS: ALK alterations were assessed in neuroblastomas at diagnosis and/or relapse from a total of 943 patients, covering all stages of disease. Longitudinal information on diagnostic and relapsed samples from individual patients was available in 101 and 102 cases for mutation and amplification status, respectively. RESULTS: At diagnosis, ALK point mutations occurred in 10.5% of all cases, with highest frequencies in stage 4 patients <18 months. At relapse, ALK alteration frequency increased by 70%, both in high-risk and non-high-risk cases. The increase was most likely due to de novo mutations, frequently leading to R1275Q substitutions, which are sensitive to pharmacological ALK inhibition. By contrast, the frequency of ALK amplifications did not change over the course of the disease. ALK amplifications, but not mutations, were associated with poor patient outcome. CONCLUSIONS: The considerably increased frequency of ALK mutations at relapse and their high prevalence in young stage 4 patients suggest surveying the genomic ALK status regularly in these patient cohorts, and to evaluate ALK-targeted treatment also in intermediate-risk patients.


Assuntos
Neuroblastoma , Receptores Proteína Tirosina Quinases , Criança , Humanos , Quinase do Linfoma Anaplásico/genética , Receptores Proteína Tirosina Quinases/genética , Recidiva Local de Neoplasia/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Genômica
12.
EBioMedicine ; 87: 104395, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36493725

RESUMO

BACKGROUND: Neuroblastoma (NB) is the most common solid extracranial paediatric tumour. Genome-wide association studies have driven the discovery of common risk variants, but no large study has investigated the contribution of rare variants to NB susceptibility. Here, we conducted a whole-exome sequencing (WES) of 664 NB cases and 822 controls and used independent validation datasets to identify genes with rare risk variants and involved pathways. METHODS: WES was performed at 50× depth and variants were jointly called in cases and controls. We developed two models to identify mutations with high clinical impact (P/LP model) and to discover less penetrant risk mutations affecting non-canonical cancer pathways (RPV model). We performed a gene-level collapsing test using Firth's logistic regression in 242 selected cancer predisposition genes (CPGs) and a gene-sets burden analysis of biologically-informed pathways. FINDINGS: Twelve percent of patients carried P/LP variants in CPGs and showed a significant enrichment (P = 2.3 × 10-4) compared to controls (6%). We identified P/LP variants in 45 CPGs enriched in homologous recombination (HR) pathway. The most P/LP enriched genes in NB were BRCA1, ALK and RAD51C. Additionally, we found higher RPV burden in gene-sets of neuron differentiation, neural tube development and synapse assembly, and in gene-sets associated with neurodevelopmental disorders (NDD). INTERPRETATION: The high fraction of NB patients with P/LP variants indicates the need of genetic counselling. Furthermore, inherited rare variants predispose to NB development by affecting mechanisms related to HR and neurodevelopmental processes, and demonstrate that NDD genes are altered in NB at the germline level. FUNDING: Associazione Italiana per la Ricerca sul Cancro, Fondazione Italiana per la Lotta al Neuroblastoma, Associazione Oncologia Pediatrica e Neuroblastoma, Regione Campania, Associazione Giulio Adelfio onlus, and Italian Health Ministry.


Assuntos
Predisposição Genética para Doença , Neuroblastoma , Humanos , Criança , Estudo de Associação Genômica Ampla , Mutação , Neuroblastoma/genética , Recombinação Homóloga
13.
NPJ Precis Oncol ; 6(1): 94, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575299

RESUMO

The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.

14.
Leukemia ; 36(12): 2863-2874, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36333584

RESUMO

Resistance towards cancer treatment represents a major clinical obstacle, preventing cure of cancer patients. To gain mechanistic insights, we developed a model for acquired resistance to chemotherapy by treating mice carrying patient derived xenografts (PDX) of acute lymphoblastic leukemia with widely-used cytotoxic drugs for 18 consecutive weeks. In two distinct PDX samples, tumors initially responded to treatment, until stable disease and eventually tumor re-growth evolved under therapy, at highly similar kinetics between replicate mice. Notably, replicate tumors developed different mutations in TP53 and individual sets of chromosomal alterations, suggesting independent parallel clonal evolution rather than selection, driven by a combination of stochastic and deterministic processes. Transcriptome and proteome showed shared dysregulations between replicate tumors providing putative targets to overcome resistance. In vivo CRISPR/Cas9 dropout screens in PDX revealed broad dependency on BCL2, BRIP1 and COPS2. Accordingly, venetoclax re-sensitized derivative tumors towards chemotherapy, despite genomic heterogeneity, demonstrating direct translatability of the approach. Hence, despite the presence of multiple resistance-associated genomic alterations, effective rescue treatment for polychemotherapy-resistant tumors can be identified using functional testing in preclinical models.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Camundongos , Animais , Sistemas CRISPR-Cas , Antineoplásicos/uso terapêutico , Neoplasias/genética , Modelos Animais de Doenças , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Br J Cancer ; 127(11): 2006-2015, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175618

RESUMO

BACKGROUND: Neuroblastoma is the most common malignancy in infancy, accounting for 15% of childhood cancer deaths. Outcome for the high-risk disease remains poor. DNA-methylation patterns are significantly altered in all cancer types and can be utilised for disease stratification. METHODS: Genome-wide DNA methylation (n = 223), gene expression (n = 130), genetic/clinical data (n = 213), whole-exome sequencing (n = 130) was derived from the TARGET study. Methylation data were derived from HumanMethylation450 BeadChip arrays. t-SNE was used for the segregation of molecular subgroups. A separate validation cohort of 105 cases was studied. RESULTS: Five distinct neuroblastoma molecular subgroups were identified, based on genome-wide DNA-methylation patterns, with unique features in each, including three subgroups associated with known prognostic features and two novel subgroups. As expected, Cluster-4 (infant diagnosis) had significantly better 5-year progression-free survival (PFS) than the four other clusters. However, in addition, the molecular subgrouping identified multiple patient subsets with highly increased risk, most notably infant patients that do not map to Cluster-4 (PFS 50% vs 80% for Cluster-4 infants, P = 0.005), and allowed identification of subgroup-specific methylation differences that may reflect important biological differences within neuroblastoma. CONCLUSIONS: Methylation-based clustering of neuroblastoma reveals novel molecular subgroups, with distinct molecular/clinical characteristics and identifies a subgroup of higher-risk infant patients.


Assuntos
Metilação de DNA , Neuroblastoma , Lactente , Humanos , Neuroblastoma/genética , Prognóstico , Sequenciamento do Exoma , Análise por Conglomerados
16.
Int J Cancer ; 151(4): 590-606, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35411591

RESUMO

Chromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.


Assuntos
Neoplasias Ósseas , Neoplasias Cerebelares , Cromotripsia , Osteossarcoma , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , DNA , Reparo do DNA , Proteínas Hedgehog/genética , Humanos , Camundongos , Osteossarcoma/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
17.
Nat Cancer ; 3(4): 471-485, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35484422

RESUMO

Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors.


Assuntos
Ferroptose , Neuroblastoma , Morte Celular , Criança , Cisteína/uso terapêutico , Ferroptose/genética , Glutationa/uso terapêutico , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética
18.
Cancers (Basel) ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35159116

RESUMO

The survival rate among children with relapsed tumors remains poor, due to tumor heterogeneity, lack of directly actionable tumor drivers and multidrug resistance. Novel personalized medicine approaches tailored to each tumor are urgently needed to improve cancer treatment. Current pediatric precision oncology platforms, such as the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) study, reveal that molecular profiling of tumor tissue identifies targets associated with clinical benefit in a subgroup of patients only and should be complemented with functional drug testing. In such an approach, patient-derived tumor cells are exposed to a library of approved oncological drugs in a physiological setting, e.g., in the form of animal avatars injected with patient tumor cells. We used molecularly fully characterized tumor samples from the INFORM study to compare drug screen results of individual patient-derived cell models in functional assays: (i) patient-derived spheroid cultures within a few days after tumor dissociation; (ii) tumor cells reisolated from the corresponding mouse PDX; (iii) corresponding long-term organoid-like cultures and (iv) drug evaluation with the corresponding zebrafish PDX (zPDX) model. Each model had its advantage and complemented the others for drug hit and drug combination selection. Our results provide evidence that in vivo zPDX drug screening is a promising add-on to current functional drug screening in precision medicine platforms.

19.
Nucleic Acids Res ; 50(11): e61, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35188570

RESUMO

Alternative lengthening of telomeres (ALT) occurs in ∼10% of cancer entities. However, little is known about the heterogeneity of ALT activity since robust ALT detection assays with high-throughput in situ readouts are lacking. Here, we introduce ALT-FISH, a method to quantitate ALT activity in single cells from the accumulation of single-stranded telomeric DNA and RNA. It involves a one-step fluorescent in situ hybridization approach followed by fluorescence microscopy imaging. Our method reliably identified ALT in cancer cell lines from different tumor entities and was validated in three established models of ALT induction and suppression. Furthermore, we successfully applied ALT-FISH to spatially resolve ALT activity in primary tissue sections from leiomyosarcoma and neuroblastoma tumors. Thus, our assay provides insights into the heterogeneity of ALT tumors and is suited for high-throughput applications, which will facilitate screening for ALT-specific drugs.


Assuntos
Telômero/metabolismo , Linhagem Celular , DNA de Cadeia Simples/genética , Humanos , Hibridização in Situ Fluorescente , Neoplasias/genética , Telomerase/genética , Telômero/genética , Homeostase do Telômero
20.
Int J Cancer ; 150(6): 903-915, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34636058

RESUMO

The childhood malignancy neuroblastoma belongs to the group of embryonal tumors and originates from progenitor cells of the sympathoadrenal lineage. Treatment options for children with high-risk and relapsed disease are still very limited. In recent years, an ever-growing molecular diversity was identified using (epi)-genetic profiling of neuroblastoma tumors, indicating that molecularly targeted therapies could be a promising therapeutic option. In this review article, we summarize the various molecular subtypes and genetic events associated with neuroblastoma and describe recent advances in targeted therapies. We lay a strong emphasis on the importance of telomere maintenance mechanisms for understanding tumor progression and risk classification of neuroblastoma.


Assuntos
Neuroblastoma/genética , Homeostase do Telômero/fisiologia , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Animais , Aurora Quinase A/antagonistas & inibidores , Aberrações Cromossômicas , Genes p53 , Genes ras , Humanos , Mutação , Neuroblastoma/tratamento farmacológico , Transdução de Sinais , Homeostase do Telômero/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA