Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(7): 240455, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39076353

RESUMO

Hatcheries are vital to many salmon fisheries, with inherent risks and rewards. While hatcheries can increase the returns of adult fish, the demographic and evolutionary consequences for natural populations interacting with hatchery fish on spawning grounds remain unclear. This study examined the impacts of stray hatchery-origin pink salmon on natural population productivity and resilience. We explored temporal assortative mating dynamics using a quantitative genetic model that assumed the only difference between hatchery- and natural-origin adults was their return timing to natural spawning grounds. This model was parameterized with empirical data from an intensive multi-generational study of hatchery-wild interactions in the world's largest pink salmon fisheries enhancement program located in Prince William Sound, Alaska. Across scenarios of increasing hatchery fish presence on spawning grounds, our findings underscore a trade-off between demographic enhancement and preservation of natural population diversity. While enhancement bolstered natural population sizes towards local carrying capacities, hatchery introgression reduced variation in adult return timing by up to 20%. Results indicated that hatchery-origin alleles can rapidly assimilate into natural populations, despite the reduced fitness of hatchery fish attributable to phenotypic mismatches. These findings elucidate the potential for long-term demographic and evolutionary consequences arising from specific hatchery-wild interactions, emphasizing the need for management strategies that balance demographic enhancement with the conservation of natural diversity.

2.
Mol Ecol ; 32(21): 5838-5848, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37830261

RESUMO

The homing behaviour of salmon is a remarkable natural phenomenon, critical for shaping the ecology and evolution of populations yet the spatial scale at which it occurs is poorly understood. This study investigated the spatial scale and mechanisms driving homing as depicted by spawning site-choice behaviour in pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Molecular pedigree analyses of over 30,000 adult spawners in four streams revealed that pink salmon exhibit fine-scale site fidelity within a stream, returning to within <100 m of their parents. Homing behaviours were driven in part by a salinity gradient between intertidal and freshwater environments, with individuals incubated in freshwater environments more than twice as likely to spawn upstream of tidal influence than those incubated in the intertidal. Our findings challenge the traditional view that pink salmon populations are genetically and phenotypically homogenous due to their short freshwater residency as juveniles and high rates of dispersal as returning adults (i.e. straying). This study has important implications for rates of inbreeding, local adaptation and gene flow within populations, and is particularly relevant to the management of salmon hatcheries, given the high incidence of hatchery-origin pink salmon, reared in freshwater hatchery environments, that stray into wild populations of Prince William Sound.


Assuntos
Ecótipo , Salmão , Humanos , Animais , Salmão/genética , Comportamento de Retorno ao Território Vital , Ecologia , Alaska
3.
Environ Toxicol Chem ; 42(11): 2440-2452, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493065

RESUMO

Proposed development of a mine within Alaska's Bristol Bay watershed (USA) has raised concerns about the potential impact of copper (Cu) on Pacific salmon (Oncorhynchus spp.). We conducted 96-h flow-through bioassays using low-hardness and low dissolved organic carbon water to determine the acute lethal toxicity of Cu to sockeye (Oncorhynchus nerka), Chinook (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) fry. We aimed to determine Cu toxicity under field-relevant water quality conditions and to assess three methods of calculating ambient Cu criteria: the biotic ligand model (BLM), a multiple linear regression model endorsed by the US Environmental Protection Agency, and the hardness-based model currently used by the State of Alaska. The criteria generated by all models were below 20% lethal Cu concentrations by factors ranging from 2.2 to 54.3, indicating that all criteria would be protective against mortality. The multiple linear regression-based criteria were the most conservative and were comparable to BLM-based criteria. The median lethal concentrations (LC50s) for sockeye, Chinook, and coho were 35.2, 23.9, and 6.3 µg Cu/L, respectively. We also used the BLM to predict LC50s for each species. Model predictions differed from empirical LC50s by factors of 0.7 for sockeye and Chinook salmon, and 1.1 for coho salmon. These differences fell within the acceptable range of ±2, indicating the model's accuracy. We calculated critical lethal Cu accumulation values for each species to account for differing water chemistry in each bioassay; the present study revealed that coho salmon were most sensitive to Cu, followed by sockeye and Chinook salmon. Our findings underscore the importance of considering site- and species-specific factors when modeling Cu toxicity. The empirical data we present may enhance Cu risk assessments for Pacific salmon. Environ Toxicol Chem 2023;42:2440-2452. © 2023 SETAC.


Assuntos
Oncorhynchus , Poluentes Químicos da Água , Animais , Matéria Orgânica Dissolvida , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Dureza , Salmão
4.
Sci Total Environ ; 896: 165247, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37400021

RESUMO

The frequency of dissolved oxygen depletion events (hypoxia) in coastal aquatic ecosystems has risen dramatically since the late 20th century, yet the causes and consequences of hypoxia for some culturally and economically important species remain poorly understood. In rivers, oxygen depletion can be caused by high densities of spawning Pacific salmon (Oncorhynchus spp.) consuming oxygen faster than can be replaced by reaeration. This process may be exacerbated when salmon densities are artificially inflated, such as when hatchery-origin salmon stray into rivers instead of returning to hatcheries. In Southeast Alaska, hatchery salmon production has increased rapidly since the 1970s, with over 553 million chum salmon (O. keta) and 64 million pink salmon (O. gorbuscha) released in 2021 alone. Straying is pervasive in streams with outlets <25 km from nearshore marine hatchery release sites. Using a previously ground-truthed mechanistic model of dissolved oxygen dynamics, we examined how water temperature and low-flow channel hydraulics contribute to hypoxia vulnerability. We then applied the model to predict hypoxia vulnerability for watersheds within 25 km of hatchery salmon release points, where straying salmon spawner densities are expected to be higher and promote dissolved oxygen depletion. Our model predicted that low-gradient stream reaches, regardless of water temperature, are the most prone to hypoxia due to low reaeration rates. Our spatial analysis determined that nearly 17,000 km of anadromous-accessible stream reaches are vulnerable to high densities of hatchery-origin salmon based on 2021 release sites. To our knowledge, this study is the first to map the spatial variation of hypoxia vulnerability in anadromous watersheds, identify habitat conditions most likely to promote hypoxia, and provide a repeatable analytical approach to identify hypoxia-prone stream reaches that can be updated as empirical data sets improve.


Assuntos
Oncorhynchus , Salmão , Animais , Ecossistema , Alaska , Rios , Hipóxia , Oxigênio , Água
5.
Evol Appl ; 16(6): 1119-1134, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37360023

RESUMO

Invasive species are a major threat to global biodiversity, yet also represent large-scale unplanned ecological and evolutionary experiments to address fundamental questions in nature. Here we analyzed both native and invasive populations of predatory northern pike (Esox lucius) to characterize landscape genetic variation, determine the most likely origins of introduced populations, and investigate a presumably postglacial population from Southeast Alaska of unclear provenance. Using a set of 4329 SNPs from 351 individual Alaskan northern pike representing the most widespread geographic sampling to date, our results confirm low levels of genetic diversity in native populations (average 𝝅 of 3.18 × 10-4) and even less in invasive populations (average 𝝅 of 2.68 × 10-4) consistent with bottleneck effects. Our analyses indicate that invasive northern pike likely came from multiple introductions from different native Alaskan populations and subsequently dispersed from original introduction sites. At the broadest scale, invasive populations appear to have been founded from two distinct regions of Alaska, indicative of two independent introduction events. Genetic admixture resulting from introductions from multiple source populations may have mitigated the negative effects associated with genetic bottlenecks in this species with naturally low levels of genetic diversity. Genomic signatures strongly suggest an excess of rare, population-specific alleles, pointing to a small number of founding individuals in both native and introduced populations consistent with a species' life history of limited dispersal and gene flow. Lastly, the results strongly suggest that a small isolated population of pike, located in Southeast Alaska, is native in origin rather than stemming from a contemporary introduction event. Although theory predicts that lack of genetic variation may limit colonization success of novel environments, we detected no evidence that a lack of standing variation limited the success of this genetically depauperate apex predator.

6.
Ecol Appl ; 32(8): e2701, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35751517

RESUMO

One of the risks faced by habitat restoration practitioners is whether habitats included in restoration planning will be used by the target species or, conversely, whether habitats excluded from restoration planning would have benefited the target species. With the goal of providing a quantitative decision-making approach that represented varying levels of risk tolerance, we used multiple probability decision thresholds (PDT) to predict the range of occurrence for three anadromous fishes (Oncorhynchus spp.) in a watershed in southwestern Washington, USA. For each species, we compared the predicted range of occurrence to the distribution used for restoration planning and quantified the amount of habitat blocked by anthropogenic barriers. Coho salmon (O. kisutch) had the broadest predicted range of occurrence (3061.6-6357.9 km; 0.75-0.25 PDT), followed by steelhead trout (O. mykiss; 1828.8-2836.8 km) and chum salmon (O. keta; 1373.9-1629.1 km). For each species, the predicted range of occurrence was similar or greater than the distribution used for restoration planning, suggesting that the current plan may exclude habitats that would benefit each species. Coho salmon had the greatest percentage of habitat blocked by anthropogenic barriers, followed by steelhead trout and chum salmon, respectively. Modeling species distributions at multiple risk-tolerance scenarios acknowledges uncertainty in restoration planning and allows practitioners to weigh the ecological benefits and budgetary constraints when considering locations for restoration. To effectively communicate restoration science to support practitioners in decision-making, we developed an R Shiny application online user interface available at: https://shiny.wdfw-fish.us/ChehalisRiverBasinSalmonidRangeOfOccurence/.


Assuntos
Oncorhynchus kisutch , Salmonidae , Animais , Ecossistema , Washington
7.
Chemosphere ; 298: 134279, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35283142

RESUMO

Fish consumption has many health benefits, but exposure to contaminants, such as mercury (Hg), in fish tissue can be detrimental to human health. The Tanana River drainage, Alaska, USA supports the largest recreational harvest of burbot (Lota lota) in the state, yet information to evaluate the potential risks of consumption by humans is lacking. To narrow this knowledge gap, we sought to (i) quantify the concentrations of total Hg ([THg]) in burbot muscle and liver tissue and the ratio between the two tissues, (ii) assess the effect of age, length, and sex on [THg] in muscle and liver tissue, (iii) evaluate if [THg] in muscle tissue varied based on trophic information, and (iv) compare observed [THg] to consumption guidelines and statewide baseline data. The mean [THg] was 268.2 ng/g ww for muscle tissue and 62.3 ng/g ww for liver tissue. Both muscle [THg] and liver [THg] values were positively associated with fish length. Trophic information (δ15N and δ13C) was not significantly related to measured [THg] in burbot muscle, which is inconsistent with typical patterns of biomagnification observed in other fishes. All burbot sampled were within the established categories for consumption recommendations determined by the State of Alaska for women of childbearing age and children. Our results provide the necessary first step towards informed risk assessment of burbot consumption in the Tanana drainage and offer parallels to fisheries and consumers throughout the subarctic and Arctic region.


Assuntos
Gadiformes , Mercúrio , Poluentes Químicos da Água , Alaska , Animais , Ecotoxicologia , Monitoramento Ambiental , Feminino , Peixes , Humanos , Mercúrio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
PLoS One ; 16(7): e0254097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214119

RESUMO

The relentless role of invasive species in the extinction of native biota requires predictions of ecosystem vulnerability to inform proactive management strategies. The worldwide invasion and range expansion of predatory northern pike (Esox lucius) has been linked to the decline of native fishes and tools are needed to predict the vulnerability of habitats to invasion over broad geographic scales. To address this need, we coupled an intrinsic potential habitat modelling approach with a Bayesian network to evaluate the vulnerability of five culturally and economically vital species of Pacific salmon (Oncorhynchus spp.) to invasion by northern pike. This study was conducted along 22,875 stream km in the Southcentral region of Alaska, USA. Pink salmon (O. gorbuscha) were the most vulnerable species, with 15.2% (2,458 km) of their calculated extent identified as "highly" vulnerable, followed closely by chum salmon (O. keta, 14.8%; 2,557 km) and coho salmon (O. kisutch, 14.7%; 2,536 km). Moreover, all five Pacific salmon species were highly vulnerable in 1,001 stream km of shared habitat. This simple to implement, adaptable, and cost-effective framework will allow prioritizing habitats for early detection and monitoring of invading northern pike.


Assuntos
Esocidae/fisiologia , Espécies Introduzidas , Oncorhynchus/fisiologia , Alaska , Animais , Teorema de Bayes , Ecossistema , Geografia , Atividades Humanas , Modelos Teóricos , Rios , Especificidade da Espécie
9.
PLoS One ; 16(2): e0247370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606847

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) populations have experienced widespread declines in abundance and abrupt shifts toward younger and smaller adults returning to spawn in rivers. The causal agents underpinning these shifts are largely unknown. Here we investigate the potential role of late-stage marine mortality, defined as occurring after the first winter at sea, in driving this species' changing age structure. Simulations using a stage-based life cycle model that included additional mortality during after the first winter at sea better reflected observed changes in the age structure of a well-studied and representative population of Chinook salmon from the Yukon River drainage, compared with a model estimating environmentally-driven variation in age-specific survival alone. Although the specific agents of late-stage mortality are not known, our finding is consistent with work reporting predation by salmon sharks (Lamna ditropis) and marine mammals including killer whales (Orcinus orca). Taken as a whole, this work suggests that Pacific salmon mortality after the first winter at sea is likely to be higher than previously thought and highlights the need to investigate selective sources of mortality, such as predation, as major contributors to rapidly changing age structure of spawning adult Chinook salmon.


Assuntos
Salmão/crescimento & desenvolvimento , Tubarões/fisiologia , Orca/fisiologia , Animais , Feminino , Estágios do Ciclo de Vida , Masculino , Mortalidade , Oceanos e Mares , Crescimento Demográfico , Comportamento Predatório
10.
Proc Biol Sci ; 287(1937): 20202137, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33081624

RESUMO

The mass migration of animals is one of the great wonders of the natural world. Although there are multiple benefits for individuals migrating in groups, an increasingly recognized benefit is collective navigation, whereby social interactions improve animals' ability to find their way. Despite substantial evidence from theory and laboratory-based experiments, empirical evidence of collective navigation in nature remains sparse. Here we used a unique large-scale radiotelemetry dataset to analyse the movements of adult Pacific salmon (Oncorhynchus sp.) in the Columbia River Basin, USA. These salmon face substantial migratory challenges approaching, entering and transiting fishways at multiple large-scale hydroelectric mainstem dams. We assess the potential role of collective navigation in overcoming these challenges and show that Chinook salmon (O. tshawytscha), but not sockeye salmon (O. nerka) locate fishways faster and pass in fewer attempts at higher densities, consistent with collective navigation. The magnitude of the density effects were comparable to major established drivers such as water temperature, and model simulations predicted that major fluctuations in population density can have substantial impacts on key quantities including mean passage time and fraction of fish with very long passage times. The magnitude of these effects indicates the importance of incorporating conspecific density and social dynamics into models of the migration process. Density effects on both ability to locate fishways and number of passage attempts have the potential to enrich our understanding of migratory energetics and success of migrating anadromous salmonids. More broadly, our work reveals a potential role of collective navigation, in at least one species, to mitigate the effects of anthropogenic barriers to animals on the move.


Assuntos
Migração Animal , Oncorhynchus , Natação , Animais , Humanos , Rios , Temperatura
11.
Ecol Evol ; 10(19): 10296-10304, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072259

RESUMO

This paper documents a mass en route mortality event of adult summer chum salmon (Oncorhynchus keta) returning to the Koyukuk River, Alaska in the Yukon River basin. In response to reports from local communities, a small team of researchers (including the author) surveyed ca. 275 km of river on July 26 and 27, 2019 and counted 1,364 dead salmon. Although the total magnitude of mortality is unknown, counts from the survey certainly represent only a small fraction of the true number of fish that died. We sampled 73 carcasses to confirm death occurred prematurely prior to complete maturation and spawning, and to quantify sex and length. Visual inspection revealed a substantial fraction exhibited patterns of fungal growth consistent with secondary infections of skin lesions caused by the ubiquitous natural bacterial pathogen Flavobacterium columnare. Water temperatures during the survey averaged 17.1°C and the water was approximately 85% saturated with oxygen (ca. 8.5 mg/L), which likely contributed to the stress for upstream migrants. Evidence suggests size-selective en route mortality as female migrants that died were 2% and male migrants 5% shorter than individuals that survived to their spawning grounds on Henshaw Creek. This translates to very strong estimates of natural selection using standardized selection differentials, yet it is unclear whether selection acts on body size directly or indirectly through correlated phenotypic traits such as run timing. The mortality event likely underpins the below average returns of summer chum salmon to the Koyukuk River in 2019, suggesting an impact on spawner abundance. The future consequences of this, or potentially increasingly frequent, en route mortality events for population productivity and the extent to which genetic adaptation or adaptive phenotypic plasticity of migration behavior may facilitate persistence of these populations is unknown.

12.
Evol Appl ; 13(8): 2000-2013, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908600

RESUMO

Due to the mediating role of body size in determining fitness, the "bigger-is-better" hypothesis still pervades evolutionary ecology despite evidence that natural selection on phenotypic traits varies in time and space. For Pacific salmon (genus Oncorhynchus), most individual studies quantify selection across a narrow range of sizes and ages; therefore, uncertainties remain concerning how selection on size may differ among diverse life histories. Here, we quantify the direction and magnitude of natural selection on body size among age-classes of multiple marine cohorts of O. nerka (sockeye salmon). Across four cohorts of seaward migrants, we calculated standardized selection differentials by comparing observed size distributions of out-migrating juvenile salmon to back-calculated smolt length from the scales of surviving, returning adults. Results reveal the magnitude of selection on size was very strong (>90th percentile compared to a database of 3,759 linear selection differentials) and consistent among years. However, the direction of selection on size consistently varied among age-classes. Selection was positive for fish migrating to sea after two years in freshwater (age 2) and in their first year of life (age 0), but negative for fish migrating after 1 year in freshwater (age 1). The absolute magnitude of selection was negatively correlated to mean ocean-entry timing, which may underpin negative selection favoring small age-1 fish, given associations between size and timing of seaward migration. Collectively, these results indicate that "bigger is not always better" in terms of survival and emphasize trade-offs that may exist between fitness components for organisms with similarly diverse migratory life histories.

13.
Biol Open ; 8(6)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31182627

RESUMO

Homing with high fidelity to natal spawning grounds for reproduction is a hallmark of anadromous Pacific salmon biology, although low rates of dispersal ('straying') also occurs. Currently little is known about the proximate factors influencing straying, which limits our understanding of this fundamental biological phenomenon and impedes options for reducing straying-mediated interactions between wild and hatchery-produced individuals. We explored the potential role of stress experienced in captivity prior to intentional release to manifest in developmental irregularities and potentially influence rates of straying by adults. We compared two proxies for stress between groups of hatchery-produced individuals that had homed back to the hatchery or strayed to non-natal streams compared to wild individuals that were presumed to have homed to a wild spawning stream. Blood plasma cortisol was used to assess stress at the terminus of their migration, and percent frequency of vateritic otolith development within groups as a measure of stresses incurred during development. We found no evidence that either proxy for stress was associated with straying. No differences in cortisol concentrations were found between wild and hatchery-produced chum salmon that had homed or strayed, either in males (wild=95.9±175.7 ng/ml; stray=113.4±99.7 ng/ml; home=124.7±113.8 ng/ml) or females (wild=307.6±83.4 ng/ml; stray= 329.0±208.9 ng/ml; home=294.1±134.8 ng/ml); however, significant differences between males and females occurred in each group. The percent frequency of vaterite occurrence in otoliths of hatchery-produced chum salmon that either strayed (40% vaterite) or homed (45% vaterite) did not differ significantly, though rates of vaterite occurred less frequently in wild chum salmon (24%), which is consistent with other studies. Mass thermal marking of juvenile fish in hatcheries is unlikely to increase vateritic development as neither intensity (number of temperature changes) or complexity (number of temperature change sequences) of the mark was associated with frequency of vaterite occurrence. Though not associated with straying, cortisol concentrations were associated with shorter instream lifespan of both hatchery and wild individuals but did not appear to influence rates of egg retention in spawning females, suggesting an equivocal role in reproductive ecology. Our results are suggestive that stress induced during the early stages of rearing in a hatchery environment from marking or other causes may not increase straying later in life, though the higher rates of vaterite observed in hatchery-produced fish may come at a cost of increased marine mortality, due to the otoliths' role in navigation and hearing.

14.
Glob Chang Biol ; 24(9): 4399-4416, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29774975

RESUMO

Understanding how species might respond to climate change involves disentangling the influence of co-occurring environmental factors on population dynamics, and is especially problematic for migratory species like Pacific salmon that move between ecosystems. To date, debate surrounding the causes of recent declines in Yukon River Chinook salmon (Oncorhynchus tshawytscha) abundance has centered on whether factors in freshwater or marine environments control variation in survival, and how these populations at the northern extremity of the species range will respond to climate change. To estimate the effect of factors in marine and freshwater environments on Chinook salmon survival, we constructed a stage-structured assessment model that incorporates the best available data, estimates incidental marine bycatch mortality in trawl fisheries, and uses Bayesian model selection methods to quantify support for alternative hypotheses. Models fitted to two index populations of Yukon River Chinook salmon indicate that processes in the nearshore and marine environments are the most important determinants of survival. Specifically, survival declines when ice leaves the Yukon River later in the spring, increases with wintertime temperature in the Bering Sea, and declines with the abundance of globally enhanced salmon species consistent with competition at sea. In addition, we found support for density-dependent survival limitations in freshwater but not marine portions of the life cycle, increasing average survival with ocean age, and age-specific selectivity of bycatch mortality in the Bering Sea. This study underscores the utility of flexible estimation models capable of fitting multiple data types and evaluating mortality from both natural and anthropogenic sources in multiple habitats. Overall, these analyses suggest that mortality at sea is the primary driver of population dynamics, yet under warming climate Chinook salmon populations at the northern extent of the species' range may be expected to fare better than southern populations, but are influenced by foreign salmon production.


Assuntos
Aquicultura , Mudança Climática , Longevidade , Salmão/fisiologia , Água do Mar/análise , Alaska , Animais , Teorema de Bayes , Características de História de Vida , Modelos Biológicos
15.
Artigo em Inglês | MEDLINE | ID: mdl-29581389

RESUMO

Recent advances in technology and quantitative methods have led to the emergence of a new field of study that stands to link insights of researchers from two closely related, but often disconnected disciplines: movement ecology and collective animal behaviour. To date, the field of movement ecology has focused on elucidating the internal and external drivers of animal movement and the influence of movement on broader ecological processes. Typically, tracking and/or remote sensing technology is employed to study individual animals in natural conditions. By contrast, the field of collective behaviour has quantified the significant role social interactions play in the decision-making of animals within groups and, to date, has predominantly relied on controlled laboratory-based studies and theoretical models owing to the constraints of studying interacting animals in the field. This themed issue is intended to formalize the burgeoning field of collective movement ecology which integrates research from both movement ecology and collective behaviour. In this introductory paper, we set the stage for the issue by briefly examining the approaches and current status of research in these areas. Next, we outline the structure of the theme issue and describe the obstacles collective movement researchers face, from data acquisition in the field to analysis and problems of scale, and highlight the key contributions of the assembled papers. We finish by presenting research that links individual and broad-scale ecological and evolutionary processes to collective movement, and finally relate these concepts to emerging challenges for the management and conservation of animals on the move in a world that is increasingly impacted by human activity.This article is part of the theme issue 'Collective movement ecology'.


Assuntos
Comportamento Animal , Ecologia/métodos , Etologia/métodos , Movimento , Animais , Conservação dos Recursos Naturais/métodos , Ecologia/instrumentação , Etologia/instrumentação
16.
Artigo em Inglês | MEDLINE | ID: mdl-29581394

RESUMO

Animals often travel in groups, and their navigational decisions can be influenced by social interactions. Both theory and empirical observations suggest that such collective navigation can result in individuals improving their ability to find their way and could be one of the key benefits of sociality for these species. Here, we provide an overview of the potential mechanisms underlying collective navigation, review the known, and supposed, empirical evidence for such behaviour and highlight interesting directions for future research. We further explore how both social and collective learning during group navigation could lead to the accumulation of knowledge at the population level, resulting in the emergence of migratory culture.This article is part of the theme issue 'Collective movement ecology'.


Assuntos
Migração Animal , Comportamento Animal , Navegação Espacial , Animais , Modelos Biológicos , Comportamento Social
17.
Artigo em Inglês | MEDLINE | ID: mdl-29581402

RESUMO

The spatial dispersal of individuals plays an important role in the dynamics of populations, and is central to metapopulation theory. Dispersal provides connections within metapopulations, promoting demographic and evolutionary rescue, but may also introduce maladapted individuals, potentially lowering the fitness of recipient populations through introgression of heritable traits. To explore this dual nature of dispersal, we modify a well-established eco-evolutionary model of two locally adapted populations and their associated mean trait values, to examine recruiting salmon populations that are connected by density-dependent dispersal, consistent with collective migratory behaviour that promotes navigation. When the strength of collective behaviour is weak such that straying is effectively constant, we show that a low level of straying is associated with the highest gains in metapopulation robustness and that high straying serves to erode robustness. Moreover, we find that as the strength of collective behaviour increases, metapopulation robustness is enhanced, but this relationship depends on the rate at which individuals stray. Specifically, strong collective behaviour increases the presence of hidden low-density basins of attraction, which may serve to trap disturbed populations, and this is exacerbated by increased habitat heterogeneity. Taken as a whole, our findings suggest that density-dependent straying and collective migratory behaviour may help metapopulations, such as in salmon, thrive in dynamic landscapes. Given the pervasive eco-evolutionary impacts of dispersal on metapopulations, these findings have important ramifications for the conservation of salmon metapopulations facing both natural and anthropogenic contemporary disturbances.This article is part of the theme issue 'Collective movement ecology'.


Assuntos
Distribuição Animal , Salmão/fisiologia , Comportamento Social , Migração Animal , Animais , Evolução Biológica , Densidade Demográfica , Dinâmica Populacional
19.
Glob Chang Biol ; 23(12): 5203-5217, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28586156

RESUMO

An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and among treatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could facilitate adaptive change.


Assuntos
Aclimatação , Mudança Climática , Salmão/fisiologia , Temperatura , Animais , Tamanho Corporal , Água
20.
Glob Chang Biol ; 23(11): 4663-4674, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28374524

RESUMO

Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long-term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human-mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.


Assuntos
Mudança Climática , Hibridização Genética , Espécies Introduzidas , Oncorhynchus mykiss/genética , Truta/genética , Animais , Humanos , Oncorhynchus mykiss/fisiologia , Temperatura , Truta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA