Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 8(17): 1527-45, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12052199

RESUMO

The recent success of the first FDA-approved small-molecule tyrosine kinase inhibitor Gleevec (STI-571, imatinib mesylate) in the treatment of chronic myelogenous leukemia (CML) has focused attention on the potential therapeutic usefulness of inhibitors of other kinase targets. This review shall highlight recent applications of computational chemistry methods, comprising both ligand-based and structure-based approaches, in the discovery and design of kinase inhibitors. In particular, we will focus on ATP-competitive inhibitors of selected kinase targets of therapeutic importance.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores de Proteínas Quinases , Técnicas de Química Combinatória , Desenho Assistido por Computador , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade
2.
Proteins ; 42(2): 279-93, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11119652

RESUMO

Molecular docking programs screen chemical databases for novel ligands that fit protein binding sites. When one compound fits the site well, close analogs typically do the same. Therefore, many of the compounds that are found in such screens resemble one another. This reduces the variety and novelty of the compounds suggested. In an attempt to increase the diversity of docking hit lists, the Available Chemicals Directory was grouped into families of related structures. All members of every family were docked and scored, but only the best scoring molecule of a high-ranking family was allowed in the hit list. The identity and scores of the other members of these families were recorded as annotations to the best family member, but they were not independently ranked. This family-based docking method was compared with molecule-by-molecule docking in screens against the structures of thymidylate synthase, dihydrofolate reductase (DHFR), and the cavity site of the mutant T4 lysozyme Leu99 --> Ala (L99A). In each case, the diversity of the hit list increased, and more families of known ligands were found. To investigate whether the newly identified hits were sensible, we tested representative examples experimentally for binding to L99A and DHFR. Of the six compounds tested against L99A, five bound to the internal cavity. Of the seven compounds tested against DHFR, six inhibited the enzyme with apparent K(i) values between 0.26 and 100 microM. The segregation of potential ligands into families of related molecules is a simple technique to increase the diversity of candidates suggested by database screens. The general approach should be applicable to most docking methods. Proteins 2001;42:279-293.


Assuntos
Bases de Dados Factuais , Armazenamento e Recuperação da Informação , Tetra-Hidrofolato Desidrogenase/química , Timidilato Sintase/química , Algoritmos , Sítios de Ligação , Biologia Computacional/métodos , Inibidores Enzimáticos/química , Ligantes , Timidilato Sintase/antagonistas & inibidores
3.
Protein Sci ; 8(11): 2330-7, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10595535

RESUMO

Beta-lactamases are the major resistance mechanism to beta-lactam antibiotics and pose a growing threat to public health. Recently, bacteria have become resistant to beta-lactamase inhibitors, making this problem pressing. In an effort to overcome this resistance, non-beta-lactam inhibitors of beta-lactamases were investigated for complementarity to the structure of AmpC beta-lactamase from Escherichia coli. This led to the discovery of an inhibitor, benzo(b)thiophene-2-boronic acid (BZBTH2B), which inhibited AmpC with a Ki of 27 nM. This inhibitor is chemically dissimilar to beta-lactams, raising the question of what specific interactions are responsible for its activity. To answer this question, the X-ray crystallographic structure of BZBTH2B in complex with AmpC was determined to 2.25 A resolution. The structure reveals several unexpected interactions. The inhibitor appears to complement the conserved, R1-amide binding region of AmpC, despite lacking an amide group. Interactions between one of the boronic acid oxygen atoms, Tyr150, and an ordered water molecule suggest a mechanism for acid/base catalysis and a direction for hydrolytic attack in the enzyme catalyzed reaction. To investigate how a non-beta-lactam inhibitor would perform against resistant bacteria, BZBTH2B was tested in antimicrobial assays. BZBTH2B significantly potentiated the activity of a third-generation cephalosporin against AmpC-producing resistant bacteria. This inhibitor was unaffected by two common resistance mechanisms that often arise against beta-lactams in conjunction with beta-lactamases. Porin channel mutations did not decrease the efficacy of BZBTH2B against cells expressing AmpC. Also, this inhibitor did not induce expression of AmpC, a problem with many beta-lactams. The structure of the BZBTH2B/AmpC complex provides a starting point for the structure-based elaboration of this class of non-beta-lactam inhibitors.


Assuntos
Proteínas de Bactérias , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Inibidores de beta-Lactamases , beta-Lactamases/química , Antibacterianos/química , Antibacterianos/farmacologia , Citrobacter freundii/efeitos dos fármacos , Cristalografia por Raios X , Enterobacter cloacae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Pseudomonas aeruginosa/efeitos dos fármacos , Resistência beta-Lactâmica
4.
J Med Chem ; 41(23): 4577-86, 1998 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-9804697

RESUMO

The expression of beta-lactamases is the most common form of bacterial resistance to beta-lactam antibiotics. To combat these enzymes, agents that inhibit (e.g. clavulanic acid) or evade (e.g. aztreonam) beta-lactamases have been developed. Both the beta-lactamase inhibitors and the beta-lactamase-resistant antibiotics are themselves beta-lactams, and bacteria have responded to these compounds by expressing variant enzymes resistant to inhibition (e.g. IRT-3) or that inactivate the beta-lactamase-resistant antibiotic (e.g. TEM-10). Moreover, these compounds have increased the frequency of bacteria with intrinsically resistant beta-lactamases (e.g. AmpC). In an effort to identify non-beta-lactam-based beta-lactamase inhibitors, we used the crystallographic structure of the m-aminophenylboronic acid-Escherichia coli AmpC beta-lactamase complex to suggest modifications that might enhance the affinity of boronic acid-based inhibitors for class C beta-lactamases. Several types of compounds were modeled into the AmpC binding site, and a total of 37 boronic acids were ultimately tested for beta-lactamase inhibition. The most potent of these compounds, benzo[b]thiophene-2-boronic acid (36), has an affinity for E. coli AmpC of 27 nM. The wide range of functionality represented by these compounds allows for the steric and chemical "mapping" of the AmpC active site in the region of the catalytic Ser64 residue, which may be useful in subsequent inhibitor discovery efforts. Also, the new boronic acid-based inhibitors were found to potentiate the activity of beta-lactam antibiotics, such as amoxicillin and ceftazidime, against bacteria expressing class C beta-lactamases. This suggests that boronic acid-based compounds may serve as leads for the development of therapeutic agents for the treatment of beta-lactam-resistant infections.


Assuntos
Antibacterianos/química , Proteínas de Bactérias , Inibidores Enzimáticos/química , Inibidores de beta-Lactamases , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Ácidos Borônicos/química , Cristalografia por Raios X , Sinergismo Farmacológico , Enterobacter cloacae/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Relação Estrutura-Atividade , Tiofenos , Resistência beta-Lactâmica , beta-Lactamases/metabolismo
5.
Biochemistry ; 37(46): 16082-92, 1998 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-9819201

RESUMO

The structures of AmpC beta-lactamase from Escherichia coli, alone and in complex with a transition-state analogue, have been determined by X-ray crystallography. The native enzyme was determined to 2.0 A resolution, and the structure with the transition-state analogue m-aminophenylboronic acid was determined to 2.3 A resolution. The structure of AmpC from E. coli resembles those previously determined for the class C enzymes from Enterobacter cloacae and Citrobacter freundii. The transition-state analogue, m-aminophenylboronic acid, makes several interactions with AmpC that were unexpected. Perhaps most surprisingly, the putative "oxyanion" of the boronic acid forms what appears to be a hydrogen bond with the backbone carbonyl oxygen of Ala318, suggesting that this atom is protonated. Although this interaction has not previously been discussed, a carbonyl oxygen contact with the putative oxyanion or ligand carbonyl oxygen appears in most complexes involving a beta-lactam recognizing enzyme. These observations may suggest that the high-energy intermediate for amide hydrolysis by beta-lactamases and related enzymes involves a hydroxyl and not an oxyanion, although the oxyanion form certainly cannot be discounted. The involvement of the main-chain carbonyl in ligand and transition-state recognition is a distinguishing feature between serine beta-lactamases and serine proteases, to which they are often compared. AmpC may use the interaction between the carbonyl of Ala318 and the carbonyl of the acylated enzyme to destabilize the ground-state intermediate, this destabilization energy might be relieved in the transition state by a hydroxyl hydrogen bond. The structure of the m-aminophenylboronic acid adduct also suggests several ways to improve the affinity of this class of inhibitor and points to the existence of several unusual binding-site-like features in the region of the AmpC catalytic site.


Assuntos
Proteínas de Bactérias , Ácidos Borônicos/metabolismo , Inibidores Enzimáticos/metabolismo , Escherichia coli/enzimologia , Inibidores de beta-Lactamases , beta-Lactamases/química , Ânions , Ácidos Borônicos/síntese química , Catálise , Simulação por Computador , Cristalografia por Raios X , Enterobacter cloacae/enzimologia , Inibidores Enzimáticos/síntese química , Modelos Moleculares , beta-Lactamases/metabolismo
6.
Appl Opt ; 20(17): 3058-67, 1981 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20333095

RESUMO

In many fields (e.g., spectroscopy, imaging spectroscopy, photoacoustic imaging, coded aperture imaging) binary bit patterns known as m sequences are used to encode (by multiplexing) a series of measurements in order to obtain a larger throughput. The observed measurements must be decoded to obtain the desired spectrum (or image in the case of coded aperture imaging). Decoding in the past has used a technique called the fast Hadamard transform (FHT) whose chief advantage is that it can reduce the computational effort from N(2) multiplies to N log(2) N additions or subtractions. However, the FHT has the disadvantage that it does not readily allow one to sample more finely than the number of bits used in the m sequence. This can limit the obtainable resolution and cause confusion near the sample boundaries (phasing errors). We have developed both 1-D and 2-D methods (called fast delta Hadamard transforms, FDHT) which overcome both of the above limitations. Applications of the FDHT are discussed in the context of Hadamard spectroscopy and coded aperture imaging with uniformly redundant arrays. Special emphasis has been placed on how the FDHT can unite techniques used by both of these fields into the same mathematical basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA