Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gastroenterology ; 157(3): 637-646.e4, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31095949

RESUMO

BACKGROUND & AIMS: Enteropathy and small-intestinal ulcers are common adverse effects of nonsteroidal anti-inflammatory drugs such as acetylsalicylic acid (ASA). Safe, cytoprotective strategies are needed to reduce this risk. Specific bifidobacteria might have cytoprotective activities, but little is known about these effects in humans. We used serial video capsule endoscopy (VCE) to assess the efficacy of a specific Bifidobacterium strain in healthy volunteers exposed to ASA. METHODS: We performed a single-site, double-blind, parallel-group, proof-of-concept analysis of 75 heathy volunteers given ASA (300 mg) daily for 6 weeks, from July 31 through October 24, 2017. The participants were randomly assigned (1:1) to groups given oral capsules of Bifidobacterium breve (Bif195) (≥5 × 1010 colony-forming units) or placebo daily for 8 weeks. Small-intestinal damage was analyzed by serial VCE at 6 visits. The area under the curve (AUC) for intestinal damage (Lewis score) and the AUC value for ulcers were the primary and first-ranked secondary end points of the trial, respectively. RESULTS: Efficacy data were obtained from 35 participants given Bif195 and 31 given placebo. The AUC for Lewis score was significantly lower in the Bif195 group (3040 ± 1340 arbitrary units) than the placebo group (4351 ± 3195) (P = .0376). The AUC for ulcer number was significantly lower in the Bif195 group (50.4 ± 53.1 arbitrary units) than in the placebo group (75.2 ± 85.3 arbitrary units) (P = .0258). Twelve adverse events were reported from the Bif195 group and 20 from the placebo group. None of the events was determined to be related to Bif195 intake. CONCLUSIONS: In a randomized, double-blind trial of healthy volunteers, we found oral Bif195 to safely reduce the risk of small-intestinal enteropathy caused by ASA. ClinicalTrials.gov no: NCT03228589.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Aspirina/efeitos adversos , Bifidobacterium breve/crescimento & desenvolvimento , Microbioma Gastrointestinal , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/microbiologia , Probióticos/administração & dosagem , Úlcera/prevenção & controle , Adolescente , Adulto , Endoscopia por Cápsula , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Intestino Delgado/patologia , Irlanda , Masculino , Probióticos/efeitos adversos , Fatores de Tempo , Úlcera/induzido quimicamente , Úlcera/microbiologia , Úlcera/patologia , Adulto Jovem
2.
Ugeskr Laeger ; 171(9): 718, 2009 Feb 23.
Artigo em Dinamarquês | MEDLINE | ID: mdl-19258001

RESUMO

A 70-year-old man was admitted to hospital within 5 hours after an intended overdose of benzodiazepines and morphine. He was treated with flumazenil and naloxone but GID was considered unsafe. 24 hours after admission the patient had a GCS at 5 and significant respiratory insufficiency. After intubation, large amounts of tablets were aspirated and activated charcoal instilled. Respirator treatment was required for 24 hours and the course was complicated by aspiration pneumonia. The case challenges strict time limits and a restricted attitude towards gastric emptying in massive overdose.


Assuntos
Descontaminação , Intoxicação/terapia , Idoso , Ansiolíticos/intoxicação , Antídotos/administração & dosagem , Carvão Vegetal/administração & dosagem , Descontaminação/métodos , Overdose de Drogas , Esvaziamento Gástrico , Humanos , Masculino , Morfina/intoxicação , Nitrazepam/intoxicação , Oxazepam/intoxicação , Intoxicação/tratamento farmacológico , Tentativa de Suicídio , Irrigação Terapêutica , Fatores de Tempo
3.
J Biol Chem ; 281(9): 5916-27, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16339137

RESUMO

MPI encodes phosphomannose isomerase, which interconverts fructose 6-phosphate and mannose 6-phosphate (Man-6-P), used for glycoconjugate biosynthesis. MPI mutations in humans impair protein glycosylation causing congenital disorder of glycosylation Ib (CDG-Ib), but oral mannose supplements normalize glycosylation. To establish a mannose-responsive mouse model for CDG-Ib, we ablated Mpi and provided dams with mannose to rescue the anticipated defective glycosylation. Surprisingly, although glycosylation was normal, Mpi(-/-) embryos died around E11.5. Mannose supplementation even hastened their death, suggesting that man-nose was toxic. Mpi(-/-) embryos showed growth retardation and placental hyperplasia. More than 90% of Mpi(-/-) embryos failed to form yolk sac vasculature, and 35% failed chorioallantoic fusion. We generated primary embryonic fibroblasts to investigate the mechanisms leading to embryonic lethality and found that mannose caused a concentration- and time-dependent accumulation of Man 6-P in Mpi(-/-) fibroblasts. In parallel, ATP decreased by more than 70% after 24 h compared with Mpi(+/+) controls. In cell lysates, Man-6-P inhibited hexokinase (70%), phosphoglucose isomerase (65%), and glucose-6-phosphate dehydrogenase (85%), but not phosphofructokinase. Incubating intact Mpi(-/-) fibroblasts with 2-[(3)H]deoxyglucose confirmed mannose-dependent hexokinase inhibition. Our results in vitro suggest that mannose toxicity in Mpi(-/-) embryos is caused by Man-6-P accumulation, which inhibits glucose metabolism and depletes intracellular ATP. This was confirmed in E10.5 Mpi(-/-) embryos where Man-6-P increased more than 10 times, and ATP decreased by 50% compared with Mpi(+/+) littermates. Because Mpi ablation is embryonic lethal, a murine CDG-Ib model will require hypomorphic Mpi alleles.


Assuntos
Perda do Embrião , Embrião de Mamíferos/fisiologia , Manose-6-Fosfato Isomerase/deficiência , Manose/metabolismo , Manosefosfatos , Trifosfato de Adenosina/metabolismo , Animais , Erros Inatos do Metabolismo dos Carboidratos , Células Cultivadas , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Marcação de Genes , Genótipo , Idade Gestacional , Hexoquinase/metabolismo , Humanos , Masculino , Manose/administração & dosagem , Manose/toxicidade , Manose-6-Fosfato Isomerase/genética , Manose-6-Fosfato Isomerase/metabolismo , Manosefosfatos/metabolismo , Manosefosfatos/toxicidade , Camundongos , Camundongos Knockout , Polissacarídeos/biossíntese , Gravidez
5.
Hum Mutat ; 22(5): 420-1, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14517965

RESUMO

Congenital Disorder of Glycosylation (CDG) type Ic is caused by mutations in ALG6. This gene encodes an alpha1,3 glucosyltransferase used for synthesis of the lipid linked oligosaccharide (LLO) precursor of the protein N-glycosylation pathway. CDG-Ic patients have moderate to severe psychomotor retardation, seizures, hypotonia, strabismus, and feeding difficulties. We previously identified a typical patient with a heterozygous point mutation, c.391T>C (p.Tyr131His) in ALG6. Using complementation analysis of ALG6-deficient yeast, we show that this alteration is as severe as the most common disease-causing mutation, c998C>T (p. Ala333Val), which occurs in over half of all known CDG-Ic patients. The frequency of c.391T>C (p.Tyr131His) in the US population, is 0.0214, suggesting that homozygotes would occur at a rate of& tilde;1:2,200. We identified one patient with typical CDG-Ic symptoms and a homozygous p.Tyr131His alteration in ALG6. However, in contrast to most CDG patients, her LLO and plasma transferrin glycosylation appeared normal. Thus, it is unclear whether c.391T>C causes CDG-Ic or contributes to the symptoms. Genotyping additional patients with CDG-like symptoms will be required to resolve this issue.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Defeitos Congênitos da Glicosilação/genética , Mutação Puntual , Proteínas Reguladoras de Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Frequência do Gene , Glicosilação , Homozigoto , Humanos
6.
J Pediatr ; 141(5): 695-700, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12410200

RESUMO

OBJECTIVE: To increase awareness of congenital disorders of glycosylation (CDG), we report the features of patients with a variety of clinical presentations ranging from mild hypotonia and strabismus to severe neurologic impairment. STUDY DESIGN: Nine North American patients with CDG type I and different ethnic origins were studied. RESULTS: All patients had transferrin isoelectric focusing studies with a type 1 sialotransferrin pattern. Molecular analysis showed the previously described R141H, V231M, and T237M PMM2 mutations in four patients as well as 3 rare mutations (DeltaC389, L104V, and IVS1 -1 G-->A) in the PMM2 gene in two Asian patients. CONCLUSIONS: The clinical features of these patients with diverse ethnic backgrounds confirm the variable course of CDG type I. Screening for CDG should be considered in children with relatively mild neurologic impairment, especially if they have suggestive findings such as cerebellar hypoplasia and abnormal fat distribution.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Transferrina/análise , Defeitos Congênitos da Glicosilação/etnologia , Análise Mutacional de DNA , Feminino , Glicosilação , Humanos , Lactente , Focalização Isoelétrica , Masculino
7.
Glycobiology ; 12(7): 435-42, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12122025

RESUMO

Phosphomannose isomerase (PMI) interconverts fructose-6-P (Fru-6-P) and mannose-6-P (Man-6-P), linking energy metabolism to protein glycosylation. We have cloned the mouse Mpi cDNA, analyzed its genomic organization, and studied the expression in different tissues. The Mpi gene has eight exons covering 7.2 kb. The structure and intron-exon boundaries are essentially the same as its human ortholog with 85% amino acid identity. Mpi is alternatively spliced at the 3' end, resulting in three messages with different 3'-untranslated regions. Mpi expression is regulated at both the transcription and translation levels, with the highest expression level in testis. Rabbit antibodies prepared against mouse PMI expressed in E. coli recognize a single 47-kDa band. Immunohistochemistry of mouse tissues shows general cytosolic staining in all cells. In testis, staining is intense in round spermatids and residual bodies, moderate in pachytene spermatocytes, and weak in spermatogonia and spermatozoa. In contrast, northern blot analysis shows comparable transcripts of 1.8 and 1.6 kb in pachytene spermatocytes and round spermatids, suggesting delayed translation of PMI. The stage-specific expression of PMI in testis may be important for KDN synthesis, which requires Man-6-P, or it may be needed to ensure sufficient glycosylation precursors in cells that do not utilize glucose and instead rely on lactate and pyruvate.


Assuntos
Manose-6-Fosfato Isomerase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Éxons , Imuno-Histoquímica , Íntrons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espermatozoides/enzimologia
8.
Hum Mol Genet ; 11(5): 599-604, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11875054

RESUMO

Single nucleotide polymorphisms occur throughout the human genome. A gene that causes one of the congenital disorders of glycosylation (CDG) has a mutation (911T-->C ) that changes a phenylalanine to serine at position 304 (F304S) of the alpha 1,3 glucosyl transferase. We show that this change reduces the ability of the gene product to rescue defective glycosylation of an alg6-deficient strain of Saccharomyces cerevisiae during rapid growth. This finding suggested that the mutation might affect glycosylation in humans. We therefore compared the frequency of this variant in 301 controls and in 101 CDG patients who carry known mutations in other genes involved in CDG, i.e. PMM2 (CDG-Ia; 91 patients) and MPI (CDG-Ib; 10 patients). The variant allele frequency is identical in both CDG patients (0.30) and controls (0.28). Importantly, the F304S genotype frequency in 55 CDG-Ia patients classified as mild/moderate (n = 28), or severe (n = 27) was significantly higher in severely affected patients (0.41) than in mild/moderately affected patients (0.21). Mortality (n = 9) was higher when F304S was present (n = 6). Severely affected patients with the PMM2 mutations F119L/R141H (n = 22) carry the F304S mutation more often (0.36) than mildly affected patients (0.18, n = 11) with this mutation. Clinical severity of mildly affected sibs with the same PMM2 mutations did not correlate with F304S genotype. Thus, the presence of the F304S allele may exacerbate the clinical outcome, especially in severely affected CDG patients. We speculate that this type of variant may be implicated in other multi-factorial disorders that involve N-glycosylation.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/fisiopatologia , Glucosiltransferases/genética , Proteínas de Membrana , Mutação/genética , Fosfotransferases (Fosfomutases)/genética , Substituição de Aminoácidos , Estudos de Coortes , Defeitos Congênitos da Glicosilação/enzimologia , Éxons , Galactosiltransferases/química , Galactosiltransferases/genética , Frequência do Gene , Variação Genética , Glicosilação , Heterozigoto , Homozigoto , Humanos , Fosfotransferases (Fosfomutases)/deficiência , Fosfotransferases (Fosfomutases)/metabolismo , Saccharomyces cerevisiae/genética , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA