RESUMO
Uganda is a developing low-income country with a low incidence of colorectal cancer, which is steadily increasing. Ugandan colorectal cancer (CRC) patients are young and present with advanced-stage disease. In our population, there is a scarcity of genetic oncological studies, therefore, we investigated the mutational status of CRC tissues, focusing in particular on the adenomatous polyposis coli (APC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and SMAD4 genes. Our objective was to determine whether there were any differences between other populations and Ugandan patients. We performed next-generation sequencing on the extracted DNA from formalin-fixed paraffin-embedded adenocarcinoma samples from 127 patients (mean (SD) age: 54.9 (16.0) years; male:female sex ratio: 1.2:1). Most tumours were located in the rectum 56 (44.1%), 14 (11%) tumours were high grade, and 96 (75.6%) were moderate grade CRC. Stage III + IV CRC tumours were found in 109 (85.8%) patients. We identified 48 variants of APC, including 9 novel APC mutations that were all pathogenic or deleterious. For PIK3CA, we found 19 variants, of which 9 were deleterious or pathogenic. Four PIK3CA novel pathogenic or deleterious variants were included (c.1397C > G, c.2399_2400insA, c.2621G > C, c.2632C > G). Three SMAD4 variants were reported, including two pathogenic or deleterious variants (c.1268G > T, c.556dupC) and one tolerant (c.563A > C) variant. One novel SMAD4 deleterious mutation (c.1268G > T) was reported. In conclusion, we provide clinicopathological information and new genetic variation data pertinent to CRC in Uganda.
Assuntos
Proteína da Polipose Adenomatosa do Colo , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais , Mutação , Proteína Smad4 , Humanos , Proteína Smad4/genética , Masculino , Feminino , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Pessoa de Meia-Idade , Uganda/epidemiologia , Adulto , Idoso , Proteína da Polipose Adenomatosa do Colo/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
A synthetic lethal relationship exists between disruption of polymerase theta (Polθ), and loss of either 53BP1 or homologous recombination (HR) proteins, including BRCA1; however, the mechanistic basis of these observations are unclear. Here we reveal two distinct mechanisms of Polθ synthetic lethality, identifying dual influences of 1) whether Polθ is lost or inhibited, and 2) the underlying susceptible genotype. Firstly, we find that the sensitivity of BRCA1/2- and 53BP1-deficient cells to Polθ loss, and 53BP1-deficient cells to Polθ inhibition (ART558) requires RAD52, and appropriate reduction of RAD52 can ameliorate these phenotypes. We show that in the absence of Polθ, RAD52 accumulations suppress ssDNA gap-filling in G2/M and encourage MRE11 nuclease accumulation. In contrast, the survival of BRCA1-deficient cells treated with Polθ inhibitor are not restored by RAD52 suppression, and ssDNA gap-filling is prevented by the chemically inhibited polymerase itself. These data define an additional role for Polθ, reveal the mechanism underlying synthetic lethality between 53BP1, BRCA1/2 and Polθ loss, and indicate genotype-dependent Polθ inhibitor mechanisms.
Assuntos
Proteína BRCA1 , Mutações Sintéticas Letais , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Recombinação Homóloga , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , DNA Polimerase tetaRESUMO
Tumor-specific MHC class II (tsMHC-II) expression impacts tumor microenvironmental immunity. tsMHC-II positive cancer cells may act as surrogate antigen-presenting cells and targets for CD4+ T cell-mediated lysis. In colorectal cancer, tsMHC-II negativity is common, in cell lines due to CIITA promoter methylation. To clarify mechanisms of tsMHC-II repression in colorectal cancer, we analyzed colorectal cancer organoids which are epigenetically faithful to tissue of origin. 15 primary colorectal cancer organoids were treated with IFNγ ± epigenetic modifiers: flow cytometry was used for tsMHC-II expression. qRT-PCR, total RNA sequencing, nanopore sequencing, bisulfite conversion/pyrosequencing, and Western blotting was used to quantitate CIITA, STAT1, IRF1, and JAK1 expression, mutations and promoter methylation and chromatin immunoprecipitation to quantitate H3K9ac, H3K9Me2, and EZH2 occupancy at CIITA. We define three types of response to IFNγ in colorectal cancer: strong, weak, and noninducibility. Delayed and restricted expression even with prolonged IFNγ exposure was due to IFNγ-mediated EZH2 occupancy at CIITA. tsMHC-II expression was enhanced by EZH2 and histone deacetylase inhibition in the weakly inducible organoids. Noninducibility is seen in three consensus molecular subtype 1 (CMS1) organoids due to JAK1 mutation. No organoid demonstrates CIITA promoter methylation. Providing IFNγ signaling is intact, most colorectal cancer organoids are class II inducible. Upregulation of tsMHC-II through targeted epigenetic therapy is seen in one of fifteen organoids. Our approach can serve as a blueprint for investigating the heterogeneity of specific epigenetic mechanisms of immune suppression across individual patients in other cancers and how these might be targeted to inform the conduct of future trials of epigenetic therapies as immune adjuvants more strategically in cancer. Significance: Cancer cell expression of MHC class II significantly impacts tumor microenvironmental immunity. Previous studies investigating mechanisms of repression of IFNγ-inducible class II expression using cell lines demonstrate epigenetic silencing of IFN pathway genes as a frequent immune evasion strategy. Unlike cell lines, patient-derived organoids maintain epigenetic fidelity to tissue of origin. In the first such study, we analyze patterns, dynamics, and epigenetic control of IFNγ-induced class II expression in a series of colorectal cancer organoids.
Assuntos
Neoplasias Colorretais , Genes MHC da Classe II , Humanos , Interferon gama/farmacologia , Metilação , Linhagem Celular , Neoplasias Colorretais/genéticaRESUMO
In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.
Assuntos
MicroRNAs , Transcrição Gênica , Animais , Peixe-Zebra/genética , Zigoto , RNA Polimerase II/genética , MicroRNAs/genética , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Cancer cells take up amino acids from the extracellular space to drive cell proliferation and viability. Similar mechanisms are applied by immune cells, resulting in the competition between conventional T cells, or indeed chimeric antigen receptor (CAR) T cells and tumor cells, for the limited availability of amino acids within the environment. We demonstrate that T cells can be re-engineered to express SLC7A5 or SLC7A11 transmembrane amino acid transporters alongside CARs. Transporter modifications increase CAR T-cell proliferation under low tryptophan or cystine conditions with no loss of CAR cytotoxicity or increased exhaustion. Transcriptomic and phenotypic analysis reveals that downstream, SLC7A5/SLC7A11-modified CAR T cells upregulate intracellular arginase expression and activity. In turn, we engineer and phenotype a further generation of CAR T cells that express functional arginase 1/arginase 2 enzymes and have enhanced CAR T-cell proliferation and antitumor activity. Thus, CAR T cells can be adapted to the amino acid metabolic microenvironment of cancer, a hitherto recognized but unaddressed barrier for successful CAR T-cell therapy.
Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Arginase/genética , Arginase/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/metabolismo , Aminoácidos/metabolismo , Microambiente TumoralRESUMO
Objectives: Partial or total resistance to preoperative chemoradiotherapy occurs in more than half of locally advanced rectal cancer patients. Several novel or repurposed drugs have been trialled to improve cancer cell sensitivity to radiotherapy, with limited success. We aimed to understand the mechanisms of resistance to chemoradiotherapy in rectal cancer using patient derived organoid models. Design: To understand the mechanisms underlying this resistance, we compared the pre-treatment transcriptomes of patient-derived organoids (PDO) with measured radiotherapy sensitivity to identify biological pathways involved in radiation resistance coupled with single cell sequencing, genome wide CRISPR-Cas9 and targeted drug screens. Results: RNA sequencing enrichment analysis revealed upregulation of PI3K/AKT/mTOR and epithelial mesenchymal transition pathway genes in radioresistant PDOs. Single-cell sequencing of pre & post-irradiation PDOs showed mTORC1 and PI3K/AKT upregulation, which was confirmed by a genome-wide CRSIPR-Cas9 knockout screen using irradiated colorectal cancer (CRC) cell lines. We then tested the efficiency of dual PI3K/mTOR inhibitors in improving cancer cell sensitivity to radiotherapy. After irradiation, significant AKT phosphorylation was detected (p=0.027) which was abrogated with dual PI3K/mTOR inhibitors and lead to significant radiosensitisation of the HCT116 cell line and radiation resistant PDO lines. Conclusions: The PI3K/AKT/mTOR pathway upregulation contributes to radioresistance and its targeted pharmacological inhibition leads to significant radiosensitisation in CRC organoids, making it a potential target for clinical trials.
RESUMO
BACKGROUND: Three-quarters of bladder cancer patients present with early-stage disease (non-muscle-invasive bladder cancer, NMIBC, UICC TNM stages Ta, T1 and Tis); however, most next-generation sequencing studies to date have concentrated on later-stage disease (muscle-invasive BC, stages T2+). We used exome and transcriptome sequencing to comprehensively characterise NMIBCs of all grades and stages to identify prognostic genes and pathways that could facilitate treatment decisions. Tumour grading is based upon microscopy and cellular appearances (grade 1 BCs are less aggressive, and grade 3 BCs are most aggressive), and we chose to also focus on the most clinically complex NMIBC subgroup, those patients with grade 3 pathological stage T1 (G3 pT1) disease. METHODS: Whole-exome and RNA sequencing were performed in total on 96 primary NMIBCs including 22 G1 pTa, 14 G3 pTa and 53 G3 pT1s, with both exome and RNA sequencing data generated from 75 of these individual samples. Associations between genomic alterations, expression profiles and progression-free survival (PFS) were investigated. RESULTS: NMIBCs clustered into 3 expression subtypes with different somatic alteration characteristics. Amplifications of ARNT and ERBB2 were significant indicators of worse PFS across all NMIBCs. High APOBEC mutagenesis and high tumour mutation burden were both potential indicators of better PFS in G3pT1 NMIBCs. The expression of individual genes was not prognostic in BCG-treated G3pT1 NMIBCs; however, downregulated interferon-alpha and gamma response pathways were significantly associated with worse PFS (adjusted p-value < 0.005). CONCLUSIONS: Multi-omic data may facilitate better prognostication and selection of therapeutic interventions in patients with G3pT1 NMIBC. These findings demonstrate the potential for improving the management of high-risk NMIBC patients and warrant further prospective validation.
Assuntos
Neoplasias da Bexiga Urinária , Progressão da Doença , Exoma , Genômica , Humanos , Transcriptoma , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologiaRESUMO
We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management.
Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , Neoplasias Uveais , Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Endodesoxirribonucleases/genética , Predisposição Genética para Doença , Células Germinativas/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Neoplasias Uveais/genéticaRESUMO
Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva , Sensibilidade e EspecificidadeRESUMO
Background: Faecal transplantation is an evidence-based treatment for Clostridioides difficile. Patients infected with SARS-CoV-2 have been shown to shed the virus in stool for up to 33 days, well beyond the average clearance time for upper respiratory tract shedding. We carried out an analytical and clinical validation of reverse-transcriptase quantitative (RT-qPCR) as well as LAMP, LamPORE and droplet digital PCR in the detection of SARS-CoV-2 RNA in stool from donated samples for faecal microbiota transplantation (FMT), spiked samples and asymptomatic inpatients in an acute surgical unit. Methods: Killed SARS-CoV-2 viral lysate and extracted RNA was spiked into donor stool & FMT and a linear dilution series from 10 -1 to 10 -5 and tested via RT-qPCR, LAMP, LamPORE and ddPCR against SARS-CoV-2. Patients admitted to the critical care unit with symptomatic SARS-CoV-2 and sequential asymptomatic patients from acute presentation to an acute surgical unit were also tested. Results: In a linear dilution series, detection of the lowest dilution series was found to be 8 copies per microlitre of sample. Spiked lysate samples down to 10 -2 dilution were detected in FMT samples using RTQPCR, LamPORE and ddPCR and down to 10 -1 with LAMP. In symptomatic patients 5/12 had detectable SARS-CoV-2 in stool via RT-qPCR and 6/12 via LamPORE, and in 1/97 asymptomatic patients via RT-qPCR. Conclusion: RT-qPCR can be detected in FMT donor samples using RT-qPCR, LamPORE and ddPCR to low levels using validated pathways. As previously demonstrated, nearly half of symptomatic and less than one percent of asymptomatic patients had detectable SARS-CoV-2 in stool.
Assuntos
COVID-19 , SARS-CoV-2 , Transplante de Microbiota Fecal , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
A rapid isothermal method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, is reported. The procedure uses an unprecedented reverse transcription-free (RTF) approach for converting genomic RNA into DNA. This involves the formation of an RNA/DNA heteroduplex whose selective cleavage generates a short DNA trigger strand, which is then rapidly amplified using the exponential amplification reaction (EXPAR). Deploying the RNA-to-DNA conversion and amplification stages of the RTF-EXPAR assay in a single step results in the detection, via a fluorescence read-out, of single figure copy numbers per microliter of SARS-CoV-2 RNA in under 10 min. In direct three-way comparison studies, the assay has been found to be faster than both RT-qPCR and reverse transcription loop-mediated isothermal amplification (RT-LAMP), while being just as sensitive. The assay protocol involves the use of standard laboratory equipment and is readily adaptable for the detection of other RNA-based pathogens.
Assuntos
Teste para COVID-19/métodos , COVID-19/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , Humanos , Transcrição Reversa , SARS-CoV-2/isolamento & purificação , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Pathological complete response (pathCR) in rectal cancer is beneficial, as up to 75% of patients do not experience regrowth of the primary tumour, but it is poorly understood. We hypothesised that the changes seen in the pre-treatment biopsies of pathCR but not seen in residual tumour after chemoradiotherapy were the determinants of responsiveness. METHODS: Two groups of patients with either complete response (pathCR group, N = 24) or no response (poor response group, N = 24) were retrieved. Pre-treatment biopsies of cancers from these patients underwent high read depth amplicon sequencing for a targeted panel, exome sequencing, methylation profiling and immunohistochemistry for DNA repair pathway proteins. RESULTS: Twenty four patients who underwent pathCR and twenty-four who underwent poor response underwent molecular characterisation. Patients in the pathCR group had significantly higher tumour mutational burden and neoantigen load, frequent copy number alterations but fewer structural variants and enrichment for driver mutations in the PI3K/AKT/mTOR signalling pathway. There were no significant differences in tumour heterogeneity as measured by MATH score. Methylation analysis demonstrated enrichment for hypomethyation in the PI3K/AKT/mTOR signalling pathway. DISCUSSION: The phenomenon of pathCR in rectal cancer may be related to immunovisibility caused by a high tumour mutational burden phenotype. Potential therapy resistance mechanisms involve the PI3K/AKT/mTOR signalling pathway, but tumour heterogeneity does not seem to play a role in resistance.
Assuntos
Adenocarcinoma/terapia , Quimiorradioterapia , Neoplasias Retais/terapia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Estudos de Casos e Controles , Quimiorradioterapia/métodos , Evolução Clonal/genética , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Mutação em Linhagem Germinativa , Humanos , Masculino , Terapia Neoadjuvante , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Retais/genética , Neoplasias Retais/patologia , Indução de Remissão , Estudos Retrospectivos , Resultado do TratamentoRESUMO
OBJECTIVES: Rapid, high throughput diagnostics are a valuable tool, allowing the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations so as to identify and isolate people with asymptomatic and symptomatic infections. Reagent shortages and restricted access to high throughput testing solutions have limited the effectiveness of conventional assays such as quantitative RT-PCR (RT-qPCR), particularly throughout the first months of the coronavirus disease 2019 pandemic. We investigated the use of LamPORE, where loop-mediated isothermal amplification (LAMP) is coupled to nanopore sequencing technology, for the detection of SARS-CoV-2 in symptomatic and asymptomatic populations. METHODS: In an asymptomatic prospective cohort, for 3 weeks in September 2020, health-care workers across four sites (Birmingham, Southampton, Basingstoke and Manchester) self-swabbed with nasopharyngeal swabs weekly and supplied a saliva specimen daily. These samples were tested for SARS-CoV-2 RNA using the Oxford Nanopore LamPORE system and a reference RT-qPCR assay on extracted sample RNA. A second retrospective cohort of 848 patients with influenza-like illness from March 2020 to June 2020 were similarly tested from nasopharyngeal swabs. RESULTS: In the asymptomatic cohort a total of 1200 participants supplied 23 427 samples (3966 swab, 19 461 saliva) over a 3-week period. The incidence of SARS-CoV-2 detection using LamPORE was 0.95%. Diagnostic sensitivity and specificity of LamPORE was >99.5% (decreasing to approximately 98% when clustered estimation was used) in both swab and saliva asymptomatic samples when compared with the reference RT-qPCR test. In the retrospective symptomatic cohort, the incidence was 13.4% and the sensitivity and specificity were 100%. CONCLUSIONS: LamPORE is a highly accurate methodology for the detection of SARS-CoV-2 in both symptomatic and asymptomatic population settings and can be used as an alternative to RT-qPCR.
Assuntos
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Estudos de Coortes , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Limite de Detecção , Sequenciamento por Nanoporos , Nasofaringe/virologia , Poliproteínas/genética , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , SARS-CoV-2/genética , Saliva/virologia , Sensibilidade e Especificidade , Proteínas Virais/genéticaRESUMO
Abnormal CpG methylation in cancer is ubiquitous and generally detected in tumour specimens using a variety of techniques at a resolution encompassing single CpG loci to genome wide coverage. Analysis of samples with very low DNA inputs, such as formalin fixed (FFPE) biopsy specimens from clinical trials or circulating tumour DNA is challenging at the genome-wide level because of lack of available input. We present the results of low input experiments into the Illumina Infinium HD methylation assay on FFPE specimens and ctDNA samples. METHODS: For all experiments, the Infinium HD assay for methylation was used. In total, forty-eight FFPE specimens were used at varying concentrations (lowest input 50 ng); eighteen blood derived specimens (lowest input 10 ng) and six matched ctDNA input (lowest input 10 ng)/fresh tumour specimens (lowest input 250 ng) were processed. Downstream analysis was performed in R/Bioconductor for quality control metrics and differential methylation analysis as well as copy number calls. RESULTS: Correlation coefficients for CpG methylation were high at the probe level averaged R2 = 0.99 for blood derived samples and R2 > 0.96 for the FFPE samples. When matched ctDNA/fresh tumour samples were compared, R2 > 0.91 between the two. Results of differential methylation analysis did not vary significantly by DNA input in either the blood or FFPE groups. There were differences seen in the ctDNA group as compared to their paired tumour sample, possibly because of enrichment for tumour material without contaminating normal. Copy number variants observed in the tumour were generally also seen in the paired ctDNA sample with good concordance via DQ plot. CONCLUSIONS: The Illumina Infinium HD methylation assay can robustly detect methylation across a range of sample types, including ctDNA, down to an input of 10 ng. It can also reliably detect oncogenic methylation changes and copy number variants in ctDNA. These findings demonstrate that these samples can now be accessed by methylation array technology, allowing analysis of these important sample types.
RESUMO
OBJECTIVE: Complex phenotypes captured on histological slides represent the biological processes at play in individual cancers, but the link to underlying molecular classification has not been clarified or systematised. In colorectal cancer (CRC), histological grading is a poor predictor of disease progression, and consensus molecular subtypes (CMSs) cannot be distinguished without gene expression profiling. We hypothesise that image analysis is a cost-effective tool to associate complex features of tissue organisation with molecular and outcome data and to resolve unclassifiable or heterogeneous cases. In this study, we present an image-based approach to predict CRC CMS from standard H&E sections using deep learning. DESIGN: Training and evaluation of a neural network were performed using a total of n=1206 tissue sections with comprehensive multi-omic data from three independent datasets (training on FOCUS trial, n=278 patients; test on rectal cancer biopsies, GRAMPIAN cohort, n=144 patients; and The Cancer Genome Atlas (TCGA), n=430 patients). Ground truth CMS calls were ascertained by matching random forest and single sample predictions from CMS classifier. RESULTS: Image-based CMS (imCMS) accurately classified slides in unseen datasets from TCGA (n=431 slides, AUC)=0.84) and rectal cancer biopsies (n=265 slides, AUC=0.85). imCMS spatially resolved intratumoural heterogeneity and provided secondary calls correlating with bioinformatic prediction from molecular data. imCMS classified samples previously unclassifiable by RNA expression profiling, reproduced the expected correlations with genomic and epigenetic alterations and showed similar prognostic associations as transcriptomic CMS. CONCLUSION: This study shows that a prediction of RNA expression classifiers can be made from H&E images, opening the door to simple, cheap and reliable biological stratification within routine workflows.
Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica/genética , RNA/genética , Biomarcadores Tumorais/genética , Biópsia , Consenso , Conjuntos de Dados como Assunto , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Gradação de Tumores , Fenótipo , Valor Preditivo dos Testes , PrognósticoRESUMO
Colorectal Peritoneal metastases (CPM) develop in 15% of colorectal cancers. Cytoreductive surgery and heated intraperitoneal chemotherapy (CRS & HIPEC) is the current standard of care in selected patients with limited resectable CPM. Despite selection using known prognostic factors survival is varied and morbidity and mortality are relatively high. There is a need to improve patient selection and a paucity of research concerning the biology of isolated CPM. We aimed to determine the biology associated with transition from primary CRC to CPM and of patients with CPM not responding to treatment with CRS & HIPEC, to identify those suitable for treatment with CRS & HIPEC and to identify targets for existing repurposed or novel treatment strategies. A cohort of patients with CPM treated with CRS & HIPEC was recruited and divided according to prognosis. Molecular profiling of the transcriptome (n = 25), epigenome (n = 24) and genome (n = 21) of CPM and matched primary CRC was performed. CPM were characterised by frequent Wnt/ ß catenin negative regulator mutations, TET2 mutations, mismatch repair mutations and high tumour mutational burden. Here we show the molecular features associated with CPM development and associated with not responding to CRS & HIPEC. Potential applications include improving patient selection for treatment with CRS & HIPEC and in future research into novel and personalised treatments targeting the molecular features identified here.
Assuntos
Neoplasias Colorretais/terapia , Mutação , Segunda Neoplasia Primária/terapia , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/terapia , Idoso , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Procedimentos Cirúrgicos de Citorredução , Proteínas de Ligação a DNA/genética , Dioxigenases , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Masculino , Pessoa de Meia-Idade , Segunda Neoplasia Primária/genética , Seleção de Pacientes , Neoplasias Peritoneais/genética , Prognóstico , Proteínas Proto-Oncogênicas/genética , Via de Sinalização WntRESUMO
OBJECTIVE: To determine the rates of asymptomatic viral carriage and seroprevalence of SARS-CoV-2 antibodies in healthcare workers. DESIGN: A cross-sectional study of asymptomatic healthcare workers undertaken on 24/25 April 2020. SETTING: University Hospitals Birmingham NHS Foundation Trust (UHBFT), UK. PARTICIPANTS: 545 asymptomatic healthcare workers were recruited while at work. Participants were invited to participate via the UHBFT social media. Exclusion criteria included current symptoms consistent with COVID-19. No potential participants were excluded. INTERVENTION: Participants volunteered a nasopharyngeal swab and a venous blood sample that were tested for SARS-CoV-2 RNA and anti-SARS-CoV-2 spike glycoprotein antibodies, respectively. Results were interpreted in the context of prior illnesses and the hospital departments in which participants worked. MAIN OUTCOME MEASURE: Proportion of participants demonstrating infection and positive SARS-CoV-2 serology. RESULTS: The point prevalence of SARS-CoV-2 viral carriage was 2.4% (n=13/545). The overall seroprevalence of SARS-CoV-2 antibodies was 24.4% (n=126/516). Participants who reported prior symptomatic illness had higher seroprevalence (37.5% vs 17.1%, χ2=21.1034, p<0.0001) and quantitatively greater antibody responses than those who had remained asymptomatic. Seroprevalence was greatest among those working in housekeeping (34.5%), acute medicine (33.3%) and general internal medicine (30.3%), with lower rates observed in participants working in intensive care (14.8%). BAME (Black, Asian and minority ethnic) ethnicity was associated with a significantly increased risk of seropositivity (OR: 1.92, 95% CI 1.14 to 3.23, p=0.01). Working on the intensive care unit was associated with a significantly lower risk of seropositivity compared with working in other areas of the hospital (OR: 0.28, 95% CI 0.09 to 0.78, p=0.02). CONCLUSIONS AND RELEVANCE: We identify differences in the occupational risk of exposure to SARS-CoV-2 between hospital departments and confirm asymptomatic seroconversion occurs in healthcare workers. Further investigation of these observations is required to inform future infection control and occupational health practices.
Assuntos
Anticorpos Antivirais/sangue , Doenças Assintomáticas , COVID-19/diagnóstico , Pessoal de Saúde/estatística & dados numéricos , Pandemias , SARS-CoV-2/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/virologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/análise , SARS-CoV-2/genética , Estudos SoroepidemiológicosRESUMO
BACKGROUND: In January 2020 reports of unidentified severe respiratory illness were described in Wuhan, China. A rapid expansion in cases affecting most countries around the globe led to major changes in the way people live their daily lives. In the United Kingdom, the Department of Health and Social Care directed healthcare providers to establish additional resources to manage the anticipated surge in cases that could overwhelm the health services. A priority area was testing for SARS-CoV-2 RNA and its detection by qualitative RT-PCR. DESIGN: A laboratory workflow twinning research environment with clinical laboratory capabilities was implemented and validated in the University of Birmingham within 4 days of the project initiation. The diagnostic capability was centred on an IVD CE-marked RT-PCR kit and designed to provide surge capacity to the nearby Queen Elizabeth Hospital. The service was initially tasked with testing healthcare workers (HCW) using throat swabs, and subsequently the process investigated the utility of using saliva as an alternative sample type. RESULTS: Between the 8th April 2020 and the 30th April 2020, the laboratory tested a total of 1282 HCW for SARS-CoV-2 RNA in throat swabs. RNA was detected in 54 % of those who reported symptoms compatible with COVID-19, but in only 4% who were asymptomatic. CONCLUSION: This capability was established rapidly and utilised a cold-chain free methodology, applicable to a wide range of settings, and which can provide surge capacity and support to clinical laboratories facing increasing pressure during periods of national crisis.
Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/sangue , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Saliva/virologia , Capacidade de Resposta ante Emergências , Reino Unido , Fluxo de TrabalhoRESUMO
OBJECTIVES: To develop a focused panel of somatic mutations (SMs) present in the majority of urothelial bladder cancers (UBCs), to investigate the diagnostic and prognostic utility of this panel, and to compare the identification of SMs in urinary cell-pellet (cp)DNA and cell-free (cf)DNA as part of the development of a non-invasive clinical assay. PATIENTS AND METHODS: A panel of SMs was validated by targeted deep-sequencing of tumour DNA from 956 patients with UBC. In addition, amplicon and capture-based targeted sequencing measured mutant allele frequencies (MAFs) of SMs in 314 urine cpDNAs and 153 urine cfDNAs. The association of SMs with grade, stage, and clinical outcomes was investigated by univariate and multivariate Cox models. Concordance between SMs detected in tumour tissue and cpDNA and cfDNA was assessed. RESULTS: The panel comprised SMs in 23 genes: TERT (promoter), FGFR3, PIK3CA, TP53, ERCC2, RHOB, ERBB2, HRAS, RXRA, ELF3, CDKN1A, KRAS, KDM6A, AKT1, FBXW7, ERBB3, SF3B1, CTNNB1, BRAF, C3orf70, CREBBP, CDKN2A, and NRAS; 93.5-98.3% of UBCs of all grades and stages harboured ≥1 SM (mean: 2.5 SMs/tumour). RAS mutations were associated with better overall survival (P = 0.04). Mutations in RXRA, RHOB and TERT (promoter) were associated with shorter time to recurrence (P < 0.05). MAFs in urinary cfDNA and cpDNA were highly correlated; using a capture-based approach, >94% of tumour SMs were detected in both cpDNA and cfDNA. CONCLUSIONS: SMs are reliably detected in urinary cpDNA and cfDNA. The technical capability to identify very low MAFs is essential to reliably detect UBC, regardless of the use of cpDNA or cfDNA. This 23-gene panel shows promise for the non-invasive diagnosis and risk stratification of UBC.
Assuntos
DNA de Neoplasias/urina , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação/genética , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Medição de Risco , Análise de Sequência de DNARESUMO
OBJECTIVE: To investigate differences in methylation between patients with nondysplastic Barrett esophagus who progress to invasive adenocarcinoma and those who do not. BACKGROUND: Identifying patients with nondysplastic Barrett esophagus who progress to invasive adenocarcinoma remains a challenge. Previous studies have demonstrated the potential utility of epigenetic markers for identifying this group. METHODS: A whole genome methylation interrogation using the Illumina HumanMethylation 450 array of patients with nondysplastic Barrett esophagus who either develop adenocarcinoma or remain static, with validation of findings by bisulfite pyrosequencing. RESULTS: In all, 12 patients with "progressive" versus 12 with "nonprogressive" nondysplastic Barrett esophagus were analyzed via methylation array. Forty-four methylation markers were identified that may be able to discriminate between nondysplastic Barrett esophagus that either progress to adenocarcinoma or remain static. Hypomethylation of the recently identified tumor suppressor OR3A4 (probe cg09890332) validated in a separate cohort of samples (median methylation in progressors 67.8% vs 96.7% in nonprogressors; P = 0.0001, z = 3.85, Wilcoxon rank-sum test) and was associated with the progression to adenocarcinoma. There were no differences in copy number between the 2 groups, but a global trend towards hypomethylation in the progressor group was observed. CONCLUSION: Hypomethylation of OR3A4 has the ability to risk stratify the patient with nondysplastic Barrett esophagus and may form the basis of a future surveillance program.