Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(30): e2400091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38573312

RESUMO

Crystallographic characteristics, including grain boundaries and crystallographic orientation of each grain, are crucial in defining the properties of two-dimensional materials (2DMs). To date, local microstructure analysis of 2DMs, which requires destructive and complex processes, is primarily used to identify unknown 2DM specimens, hindering the subsequent use of characterized samples. Here, a nondestructive large-area 2D crystallographic analytical method through sticky-note-like van der Waals (vdW) assembling-disassembling is presented. By the vdW assembling of veiled polycrystalline graphene (PCG) with a single-atom-thick single-crystalline graphene filter (SCG-filter), detailed crystallographic information of each grain in PCGs is visualized through a 2D Raman signal scan, which relies on the interlayer twist angle. The scanned PCGs are seamlessly separated from the SCG-filter using vdW disassembling, preserving their original condition. The remaining SCG-filter is then reused for additional crystallographic scans of other PCGs. It is believed that the methods can pave the way for advances in the crystallographic analysis of single-atom-thick materials, offering huge implications for the applications of 2DMs.

2.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38063703

RESUMO

Li metal is a promising anode candidate due to its high theoretical capacity and low electrochemical potential. However, dendrite formation and the resulting dead Li cause continuous Li consumption, which hinders its practical application. In this study, we realized N-doped nanoporous carbon for a stable Li metal host composed only of lightweight elements C and N through the simple calcination of a nitrogen-containing metal-organic framework (MOF). During the calcination process, we effectively controlled the amount of lithophilic N and the electrical conductivity of the N-doped porous carbons to optimize their performance as Li metal hosts. As a result, the N-doped porous carbon exhibited excellent electrochemical performances, including 95.8% coulombic efficiency and 91% capacity retention after 150 cycles in a full cell with an LFP cathode. The N-doped nanoporous carbon developed in this study can realize a stable Li metal host without adding lithium ion metals and metal oxides, etc., which is expected to provide an efficient approach for reliable Li metal anodes in secondary battery applications.

3.
Nanomaterials (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242116

RESUMO

A two-dimensional (2D) atomic crystalline transition metal dichalcogenides has shown immense features, aiming for future nanoelectronic devices comparable to conventional silicon (Si). 2D molybdenum ditelluride (MoTe2) has a small bandgap, appears close to that of Si, and is more favorable than other typical 2D semiconductors. In this study, we demonstrate laser-induced p-type doping in a selective region of n-type semiconducting MoTe2 field effect transistors (FET) with an advance in using the hexagonal boron nitride as passivation layer from protecting the structure phase change from laser doping. A single nanoflake MoTe2-based FET, exhibiting initial n-type and converting to p-type in clear four-step doping, changing charge transport behavior in a selective surface region by laser doping. The device shows high electron mobility of about 23.4 cm2V-1s-1 in an intrinsic n-type channel and hole mobility of about 0.61 cm2V-1s-1 with a high on/off ratio. The device was measured in the range of temperature 77-300 K to observe the consistency of the MoTe2-based FET in intrinsic and laser-dopped region. In addition, we measured the device as a complementary metal-oxide-semiconductor (CMOS) inverter by switching the charge-carrier polarity of the MoTe2 FET. This fabrication process of selective laser doping can potentially be used for larger-scale MoTe2 CMOS circuit applications.

4.
Nano Lett ; 23(7): 3054-3061, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36930591

RESUMO

As the electron mobility of two-dimensional (2D) materials is dependent on an insulating substrate, the nonuniform surface charge and morphology of silicon dioxide (SiO2) layers degrade the electron mobility of 2D materials. Here, we demonstrate that an atomically thin single-crystal insulating layer of silicon oxynitride (SiON) can be grown epitaxially on a SiC wafer at a wafer scale and find that the electron mobility of graphene field-effect transistors on the SiON layer is 1.5 times higher than that of graphene field-effect transistors on typical SiO2 films. Microscale and nanoscale void defects caused by heterostructure growth were eliminated for the wafer-scale growth of the single-crystal SiON layer. The single-crystal SiON layer can be grown on a SiC wafer with a single thermal process. This simple fabrication process, compatible with commercial semiconductor fabrication processes, makes the layer an excellent replacement for the SiO2/Si wafer.

5.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202473

RESUMO

The high capacity of electrodes allows for a lower mass of electrodes, which is essential for increasing the energy density of the batteries. According to this, silicon is a promising anode candidate for Li-ion batteries due to its high theoretical capacity. However, its practical application is hampered by the significant volume expansion of silicon during battery operation, resulting in pulverization and contact loss. In this study, we developed a stable Li-ion anode that not only solves the problem of the short lifetime of silicon but also preserves the initial efficiency by using silicon nanoparticles covered with glassy ZIF-4 (SZ-4). SZ-4 suppresses silicon pulverization, contact loss, etc. because the glassy ZIF-4 wrapped around the silicon nanoparticles prevents additional SEI formation outside the silicon surface due to the electrically insulating characteristics of glassy ZIF-4. The SZ-4 realized by a simple heat treatment method showed 74% capacity retention after 100 cycles and a high initial efficiency of 78.7%.

6.
Small ; 18(13): e2105753, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35112797

RESUMO

Transition metal dichalcogenides (TMDs) are of great interest owing to their unique properties. However, TMD materials face two major challenges that limit their practical applications: contact resistance and surface contamination. Herein, a strategy to overcome these problems by inserting a monolayer of hexagonal boron nitride (h-BN) at the chromium (Cr) and tungsten disulfide (WS2 ) interface is introduced. Electrical behaviors of direct metal-semiconductor (MS) and metal-insulator-semiconductor (MIS) contacts with mono- and bilayer h-BN in a four-layer WS2 field-effect transistor (FET) are evaluated under vacuum from 77 to 300 K. The performance of the MIS contacts differs based on the metal work function when using Cr and indium (In). The contact resistance is significantly reduced by approximately ten times with MIS contacts compared with that for MS contacts. An electron mobility up to ≈115 cm2  V-1  s-1 at 300 K is achieved with the insertion of monolayer h-BN, which is approximately ten times higher than that with MS contacts. The mobility and contact resistance enhancement are attributed to Schottky barrier reduction when h-BN is introduced between Cr and WS2 . The dependence of the tunneling mechanisms on the h-BN thickness is investigated by extracting the tunneling barrier parameters.

7.
Materials (Basel) ; 14(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34885529

RESUMO

Due to the vulnerability of organic optoelectronic devices to moisture and oxygen, thin-film moisture barriers have played a critical role in improving the lifetime of the devices. Here, we propose a hexagonal boron nitride (hBN) embedded Al2O3 thin film as a flexible moisture barrier. After layer-by-layer (LBL) staking of polymer and hBN flake composite layer, Al2O3 was deposited on the nano-laminate template by spatial plasma atomic layer deposition (PEALD). Because the hBN flakes in Al2O3 thin film increase the diffusion path of moisture, the composite layer has a low water vapor transmission ratio (WVTR) value of 1.8 × 10-4 g/m2 day. Furthermore, as embedded hBN flakes restrict crack propagation, the composite film exhibits high mechanical stability in repeated 3 mm bending radius fatigue tests.

8.
Nano Lett ; 21(23): 9909-9915, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34843258

RESUMO

While the orientation-dependent properties of semiconductor nanowires have been theoretically predicted, their study has long been overlooked in many fields owing to the limits to controlling the crystallographic growth direction of nanowires (NWs). We present here the orientation-controlled growth of single-crystalline germanium (Ge) NWs using a self-catalytic low-pressure chemical vapor deposition process. By adjusting the growth temperature, the orientation of growth direction in GeNWs was selectively controlled to the ⟨110⟩, ⟨112⟩, or ⟨111⟩ directions on the same substrate. The NWs with different growth directions exhibit distinct morphological features, allowing control of the NW morphology from uniform NWs to nanoribbon structures. Significantly, the VLS-based self-catalytic growth of the ⟨111⟩ oriented GeNW suggests that NW growth is possible for single elementary materials even without an appropriate external catalyst. Furthermore, these findings could provide opportunities to investigate the orientation-dependent properties of semiconductor NWs.

9.
Sensors (Basel) ; 21(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34770570

RESUMO

We report a novel graphene transfer technique for fabricating graphene field-effect transistors (FETs) that avoids detrimental organic contamination on a graphene surface. Instead of using an organic supporting film like poly(methyl methacrylate) (PMMA) for graphene transfer, Au film is directly deposited on the as-grown graphene substrate. Graphene FETs fabricated using the established organic film transfer method are easily contaminated by organic residues, while Au film protects graphene channels from these contaminants. In addition, this method can also simplify the device fabrication process, as the Au film acts as an electrode. We successfully fabricated graphene FETs with a clean surface and improved electrical properties using this Au-assisted transfer method.

10.
Adv Sci (Weinh) ; 8(11): e2100102, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34105270

RESUMO

Manipulation of Ohmic contacts in 2D transition metal dichalcogenides for enhancing the transport properties and enabling its application as a practical device has been a long-sought goal. In this study, n-type tungsten disulfide (WS2 ) single atomic layer to improve the Ohmic contacts of the p-type molybdenum ditelluride (MoTe2 ) material is covered. The Ohmic properties, based on the lowering of Schottky barrier height (SBH) owing to the tunneling barrier effect of the WS2 monolayer, are found to be unexpectedly excellent at room temperature and even at 100 K. The improved SBH and contact resistances are 3 meV and 1 MΩ µm, respectively. The reduction in SBH and contact resistance is confirmed with temperature-dependent transport measurements. This study further demonstrates the selective carrier transport across the MoTe2 and WS2 layers by modulating the applied gate voltage. This WS2 /MoTe2 heterostructure exhibits excellent gate control over the currents of both channels (n-type and p-type). The on/off ratios for both the electron and hole channels are calculated as 107 and 106 , respectively, indicating good carrier type modulation by the electric field of the gate electrode. The Ohmic contact resistance using the tunneling of the atomic layer can be applied to heterojunction combinations of various materials.

11.
ACS Nano ; 15(7): 11276-11284, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34184867

RESUMO

The synthesis of uniform low-defect graphene on a catalytic metal substrate is getting closer to the industrial level. However, its practical application is still challenging due to the lack of an appropriate method for its scalable damage-free transfer to a device substrate. Here, an efficient approach for a defect-free, etchant-free, wrinkle-free, and large-area graphene transfer is demonstrated by exploiting a multifunctional viscoelastic polymer gel as a simultaneous shock-free adhesive and dopant layer. Initially, an amine-rich polymer solution in its liquid form allows for conformal coating on a graphene layer grown on a Cu substrate. The subsequent thermally cured soft gel enables the shock-free and wrinkle-free direct mechanical exfoliation of graphene from a substrate due to its strong charge-transfer interaction with graphene and excellent shock absorption. The adhesive gel with a high optical transparency works as an electron doping layer toward graphene, which exhibits significantly reduced sheet resistances without optical transmittance loss. Lastly, the transferred graphene layer shows high mechanical and chemical stabilities under the repeated bending test and exposure to various solvents. This gel-assisted mechanical transfer method can be a solution to connect the missing part between large-scale graphene synthesis and next-generation electronics and optoelectronic applications.

12.
Nat Commun ; 12(1): 2145, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837196

RESUMO

The energy storage performance of lithium-ion batteries (LIBs) depends on the electrode capacity and electrode/cell design parameters, which have previously been addressed separately, leading to a failure in practical implementation. Here, we show how conformal graphene (Gr) coating on Ni-rich oxides enables the fabrication of highly packed cathodes containing a high content of active material (~99 wt%) without conventional conducting agents. With 99 wt% LiNi0.8Co0.15Al0.05O2 (NCA) and electrode density of ~4.3 g cm-3, the Gr-coated NCA cathode delivers a high areal capacity, ~5.4 mAh cm-2 (~38% increase) and high volumetric capacity, ~863 mAh cm-3 (~34% increase) at a current rate of 0.2 C (~1.1 mA cm-2); this surpasses the bare electrode approaching a commercial level of electrode setting (96 wt% NCA; ~3.3 g cm-3). Our findings offer a combinatorial avenue for materials engineering and electrode design toward advanced LIB cathodes.

13.
Materials (Basel) ; 14(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925721

RESUMO

Li-ion batteries (LIBs) employ porous, composite-type electrodes, where few weight percentages of carbonaceous conducting agents and polymeric binders are required to bestow electrodes with electrical conductivity and mechanical robustness. However, the use of such inactive materials has limited enhancements of battery performance in terms of energy density and safety. In this study, we introduced graphene/polyvinylidene fluoride (Gr/PVdF) composites in Ni-rich oxide cathodes for LIBs, replacing conventional conducting agents, carbon black (CB) nanoparticles. By using Gr/PVdF suspensions, we fabricated highly dense LiNi0.85Co0.15Al0.05O2 (NCA) cathodes having a uniform distribution of conductive Gr sheets without CB nanoparticles, which was confirmed by scanning spreading resistance microscopy mode using atomic force microscopy. At a high content of 99 wt.% NCA, good cycling stability was shown with significantly improved areal capacity (Qareal) and volumetric capacity (Qvol), relative to the CB/PVdF-containing NCA electrode with a commercial-level of electrode parameters. The NCA electrodes using 1 wt.% Gr/PVdF (0.9:0.1) delivered a high Qareal of ~3.7 mAh cm-2 (~19% increment) and a high Qvol of ~774 mAh cm-3 (~18% increment) at a current rate of 0.2 C, as compared to the conventional NCA electrode. Our results suggest a viable strategy for superseding conventional conducting agents (CB) and improving the electrochemical performance of Ni-rich cathodes for advanced LIBs.

14.
ACS Appl Mater Interfaces ; 13(10): 12221-12229, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33657809

RESUMO

Molybdenum disulfide (MoS2) presents fascinating properties for next-generation applications in diverse fields. However, fully exploiting the best properties of MoS2 in largescale practical applications still remains a challenge due to lack of proper processing methods. Solution-based processing can be a promising route for scalable production of MoS2 nanosheets, but the resulting assembled film possesses an enormous number of interfaces that significantly compromise the intrinsic electrical properties. Herein, we demonstrate the solution processing of MoS2 and subsequent precursor-assisted chemical welding to form defective MoS2-x at the nanosheet interfaces. The formation of defective MoS2-x significantly reduces the electrical contact resistances, and thus the chemically welded MoS2 film exhibits more than 2 orders of magnitude improved electrical conductivity. Furthermore, the chemical welding provides MoS2-x interface induced additional defect originated functionalities for diverse applications such as broadband photodetection over the near-infrared range and improved electrocatalytic activity for hydrogen evolution reactions. Overall, this precursor-assisted chemical welding strategy can be a facile route to produce high-quality MoS2 films with low-quality defective MoS2-x at the interfaces having multifunctionalities in electronics, optoelectronics, and electrocatalysis.

15.
ChemSusChem ; 14(5): 1344-1350, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400358

RESUMO

The octahedral structure of 2D molybdenum disulfide (1T-MoS2 ) has attracted attention as a high-efficiency and low-cost electrocatalyst for hydrogen production. However, the large-scale synthesis of 1T-MoS2 films has not been realized because of higher formation energy compared to that of the trigonal prismatic phase (2H)-MoS2 . In this study, a uniform wafer-scale synthesis of the metastable 1T-MoS2 film is performed by sulfidation of the Mo metal layer using a plasma-enhanced chemical vapor deposition (PE-CVD) system. Thus, plasma-containing highly reactive ions and radicals of the sulfurization precursor enable the synthesis of 1T-MoS2 at 150 °C. Electrochemical analysis of 1T-MoS2 shows enhanced catalytic activity for the hydrogen evolution reaction (HER) compared to that of previously reported MoS2 electrocatalysts 1T-MoS2 does not transform into stable 2H-MoS2 even after 1000 cycles of HER. The proposed low-temperature synthesis approach may offer a promising solution for the facile production of various metastable-phase 2D materials.

16.
Nano Lett ; 21(1): 34-42, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33136414

RESUMO

The conventional pH sensor based on the graphene ion-sensitive field-effect transistor (Gr-ISFET), which operates with an electrostatic gating at the solution-graphene interface, cannot have a pH sensitivity above the Nernst limit (∼59 mV/pH). However, for accurate detection of the pH levels of an aqueous solution, an ultrasensitive pH sensor that can exceed the theoretical limit is required. In this study, a novel Gr-ISFET-based pH sensor is fabricated using proton-permeable defect-engineered graphene. The nanocrystalline graphene (nc-Gr) with numerous grain boundaries allows protons to penetrate the graphene layer and interact with the underlying pH-dependent charge-transfer dopant layer. We analyze the pH sensitivity of nc-Gr ISFETs by adjusting the grain boundary density of graphene and the functional group (OH-, NH2-, CH3-) on the SiO2 surface, confirming an unusual negative shift of the charge-neutral point (CNP) as the pH of the solution increases and a super-Nernstian pH response (approximately -140 mV/pH) under optimized conditions.

17.
Sci Adv ; 6(44)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33115746

RESUMO

The competition between quality and productivity has been a major issue for large-scale applications of two-dimensional materials (2DMs). Until now, the top-down mechanical cleavage method has guaranteed pure perfect 2DMs, but it has been considered a poor option in terms of manufacturing. Here, we present a layer-engineered exfoliation technique for graphene that not only allows us to obtain large-size graphene, up to a millimeter size, but also allows selective thickness control. A thin metal film evaporated on graphite induces tensile stress such that spalling occurs, resulting in exfoliation of graphene, where the number of exfoliated layers is adjusted by using different metal films. Detailed spectroscopy and electron transport measurement analysis greatly support our proposed spalling mechanism and fine quality of exfoliated graphene. Our layer-engineered exfoliation technique can pave the way for the development of a manufacturing-scale process for graphene and other 2DMs in electronics and optoelectronics.

18.
Materials (Basel) ; 13(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397067

RESUMO

Flexible transparent conducting electrodes (FTCE) are an essential component of next-generation flexible optoelectronic devices. Graphene is expected to be a promising material for the FTCE, because of its high transparency, large charge carrier mobilities, and outstanding chemical and mechanical stability. However, the electrical conductivity of graphene is still not good enough to be used as the electrode of an FTCE, which hinders its practical application. In this study, graphene was heavily n-type doped while maintaining high transmittance by adsorbing amine-rich macromolecules to graphene. The n-type charge-transfer doping of graphene was maximized by increasing the density of free amine in the macromolecule through a vacuum annealing process. The graphene adsorbed with the n-type dopants was stacked twice, resulting in a graphene FTCE with a sheet resistance of 38 ohm/sq and optical transmittance of 94.1%. The figure of merit (FoM) of the graphene electrode is as high as 158, which is significantly higher than the minimum standard for commercially available transparent electrodes (FoM = 35) as well as graphene electrodes doped with previously reported chemical doping methods. Furthermore, the n-doped graphene electrodes not only show outstanding flexibility but also maintain the doping effect even in high temperature (500 K) and high vacuum (~10-6 torr) conditions. These results show that the graphene doping proposed in this study is a promising approach for graphene-based next-generation FTCEs.

19.
ACS Nano ; 14(3): 3141-3149, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32057226

RESUMO

Despite the enormous potential of the single-crystalline two-dimensional (2D) materials for a wide range of future innovations and applications, 2D single-crystals are still suffering in industrialization due to the lack of efficient large-area production methods. In this work, we introduce a general approach for the scalable growth of single-crystalline graphene, which is a representative 2D material, through "transplanting" uniaxially aligned graphene "seedlings" onto a larger-area catalytic growth substrate. By inducing homoepitaxial growth of graphene from the edges of the seeds arrays without additional nucleations, we obtained single-crystalline graphene with an area four times larger than the mother graphene seed substrate. Moreover, the defect-healing process eliminated the inherent defects of seeds, ensuring the reliability and crystallinity of the single-crystalline graphene for industrialization.

20.
ACS Appl Mater Interfaces ; 12(4): 5031-5039, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31891246

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs) have emerged as promising materials for next-generation electronics due to their excellent semiconducting properties. However, high contact resistance at the metal-TMDC interface plagues the realization of high-performance devices. Here, an effective metal-interlayer-semiconductor (MIS) contact is demonstrated, wherein an ultrathin ZnO interlayer is inserted between the metal electrode and MoS2, providing damage-free and clean interfaces at electrical contacts. Using TEM imaging, we show that the contact interfaces were atomically clean without any apparent damages. Compared to conventional Ti/MoS2 contacts, the MoS2 devices with a Ti/ZnO/MoS2 contact exhibit a very low contact resistance of 0.9 kΩ µm. These improvements are attributed to the following mechanisms: (a) Fermi-level depinning at the metal/MoS2 interface by reducing interface disorder and (b) presence of interface dipole at the metal/ZnO interface, consequently reducing the Schottky barrier and contact resistance. Further, the contact resistivity of a Ti/ZnO/MoS2 contact is insensitive to the variation of ZnO thickness, which facilitates large-scale production. Our work not only elucidates the underlying mechanisms for the operation of the MIS contact but also provides a simple and damage-free strategy for conventional aggressive metal deposition that is potentially useful for the realization of large-scale 2D electronics with low-resistance contacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA