Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(12): 8320-8326, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489763

RESUMO

One-dimensional (1D) Heisenberg antiferromagnets are of great interest due to their intriguing quantum phenomena. However, the experimental realization of such systems with large spin S remains challenging because even weak interchain interactions induce long-range ordering. In this study, we present an ideal 1D S = 5/2 spin chain antiferromagnet achieved through a multistep topochemical route involving dehydration and rehydration. By desorbing three water molecules from (2,2'-bpy)FeF3(H2O)·2H2O (2,2'-bpy = 2,2'-bipyridyl) at 150 °C and then intercalating two water molecules at room temperature (giving (2,2'-bpy)FeF3·2H2O 1), the initially isolated FeF3ON2 octahedra combine to form corner-sharing FeF4N2 octahedral chains, which are effectively separated by organic and added water molecules. Mössbauer spectroscopy reveals significant dynamical fluctuations down to 2.7 K, despite the presence of strong intrachain interactions. Moreover, results from electron spin resonance (ESR) and heat capacity measurements indicate the absence of long-range order down to 0.5 K. This controlled topochemical dehydration/rehydration approach is further extended to (2,2'-bpy)CrF3·2H2O with S = 3/2 1D chains, thus opening the possibility of obtaining other low-dimensional spin lattices.

3.
Inorg Chem ; 62(35): 14180-14190, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595259

RESUMO

ortho-Pyrovanadate (or ortho-diorthovanadate) K2Mn23+Mn2+O(OH)(VO4)(V2O7) synthesized hydrothermally crystallizes in the orthorhombic space group Pnma with a = 17.9155(5), b = 5.8940(2), c = 10.9971(3) Å, V = 1161.23(6) Å3, and Z = 4. Its crystal structure features linear chains of edge-sharing Mn3+O6 octahedra with every second pair of Mn3+O6 octahedra condensed with a Mn2+O6 octahedron on one side of a chain in a sawtooth pattern so that each sawtooth chain consists of a triangular trimer. These sawtooth chains, running parallel to the b axis and linked by the VO4 and V2O7 groups, form a framework with channels populated by K atoms. The new compound is a structural analogue of the mineral zoisite Ca2Al3O(OH)(SiO4)(Si2O7), showing a striking example of very different chemical compositions. K2Mn3O(OH)(VO4)(V2O7) undergoes a phase transition into an ordered antiferromagnetic (AFM) state at TN = 14.4 K, which was detected by high-frequency electron spin resonance as well as by both specific heat Cp and Fisher's specific heat d(χT)/dT measurements. However, this phase transition was not detected by magnetic susceptibility measurements. The origin of this puzzling observation was resolved by evaluating the spin exchanges of K2Mn3O(OH)(VO4)(V2O7), which revealed that each triangular trimer is a ferromagnetically coupled cluster, and the observed ordering involves an AFM ordering between the ferromagnetic (FM) clusters. This ordering is shrouded in magnetic susceptibility measurements due to the susceptibility contributions from the individual FM triangular trimers even below TN. We showed that the magnetic susceptibility of K2Mn3O(OH)(VO4)(V2O7) between ∼30 K and room temperature is satisfactorily described by an AFM chain made up of ferromagnetically coupled triangular clusters, as described by a few spin-exchange parameters.

4.
Dalton Trans ; 52(28): 9631-9638, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37377378

RESUMO

The missing member of the rosiaite family, CoGeTeO6, was synthesized by mild ion-exchange reactions and characterized by magnetization M and specific heat Cp measurements. It exhibits a successive short- and long-range magnetic ordering at Tshort-range ≈ 45 K and TN = 15 K, respectively. Based on these measurements, the magnetic H-T phase diagram was established, showing two antiferromagnetic phases separated by a spin-flop transition. The reason why the pronounced short-range correlation occurs at a temperature nearly three times higher than TN was found by evaluating the Co-O⋯O-Co exchange interactions using energy-mapping analysis. Although CoGeTeO6 has a layered structure, its magnetic structure consists of three-dimensional antiferromagnetic lattices made up of rhombic boxes of Co2+ ions. The experimental data obtained at high temperatures agree well with the computational results by treating the Co2+ ions of CoGeTeO6 as S = 3/2 ions, but the heat capacity and magnetization data were obtained at low temperatures by treating the Co2+ ion as a Jeff = 1/2 ion.

5.
Materials (Basel) ; 16(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048977

RESUMO

Mixed-valent Ba2Mn2+Mn23+(SeO3)6 crystallizes in a monoclinic P21/c structure and has honeycomb layers of Mn3+ ions alternating with triangular layers of Mn2+ ions. We established the key parameters governing its magnetic structure by magnetization M and specific heat Cp measurements. The title compound exhibits a close succession of a short-range correlation order at Tcorr = 10.1 ± 0.1 K and a long-range Néel order at TN = 5.7 ± 0.1 K, and exhibits a metamagnetic phase transition at T < TN with hysteresis most pronounced at low temperatures. The causes for these observations were found using the spin exchange parameters evaluated by density functional theory calculations. The title compound represents a unique case in which uniform chains of integer spin Mn3+ (S = 2) ions interact with those of half-integer spin Mn2+ (S = 5/2) ions.

6.
J Phys Condens Matter ; 35(30)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37054736

RESUMO

Two-dimensional (2D) transition metal oxide monolayers are currently attracting great interest in materials research due to their versatility and tunable electronic and magnetic properties. In this study, we report the prediction of magnetic phase changes in HxCrO2(0 ⩽x⩽ 2) monolayer on the basis of first-principles calculations. As the H adsorption concentrationxincreases from 0 to 0.75, HxCrO2monolayer transforms from a ferromagnetic (FM) half-metal to a small-gap FM insulator. Whenx= 1.00 and 1.25, it behaves as a bipolar antiferromagnetic (AFM) insulator, and eventually becomes an AFM insulator asxincreases further up to 2.00. The results suggest that the magnetic properties of CrO2monolayer can be effectively controlled by hydrogenation, and that HxCrO2monolayers have the potential for realizing tunable 2D magnetic materials. Our results provide a comprehensive understanding of the hydrogenated 2D transition metal CrO2and provide a research method that can be used as a reference for the hydrogenation of other similar 2D materials.

7.
Dalton Trans ; 52(1): 118-127, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468631

RESUMO

We prepared Cs2Cu3(SeO3)4·2H2O composed of Cu2+ ions at square-planar coordination sites and characterized its structural and magnetic properties, to show that Cs2Cu3(SeO3)4·2H2O is a ferrimagnet exhibiting a highly anisotropic 1/3-magnetization plateau. This unprecedented anisotropy in a magnetization plateau is the consequence of three effects, namely, the orthogonal arrangements of the corner-sharing CuO4 square planes, the nearest-neighbour antiferromagnetic exchange, and the anisotropic g-factor of the Cu2+ ions at square-planar coordination sites. By analyzing the topology of magnetic bonding, we found why magnetic plateaus are observed only for certain ferrimagnets and antiferromagnets.

8.
Acc Chem Res ; 55(19): 2811-2820, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36129235

RESUMO

ConspectusThermoelectric (TE) materials have received much attention because of their ability to convert heat energy to electrical energy. At a given temperature T, the efficiency of a TE material for this energy conversion is measured by the figure of merit zT, which is related to the thermopower (or Seebeck coefficient) S, the thermal conductivity κ, and the electrical conductivity σ of the TE material as zT = (S2σT)/κ. Bi2Q3 and PbQ (Q = Se, Te) are efficient TE materials with high zT, although they are not ecofriendly and their stability is poor at high temperature. In principle, a TE material can have a high zT if it has a low thermal conductivity and a high electrical conductivity, but the latter condition is hardly met in a real material because the parameters S, σ and κ have a conflicting dependence on material properties. The difficulty in searching for TE materials of high zT is even more exasperated because the relationship between the thermopower S and the carrier density n (hereafter, the S-vs-n relationship) for the well-known hole-doped samples of BiCuSeO showed that the hole carriers responsible for their thermopower are associated largely with the electronic states lying within ∼0.5 eV of its valence band maximum (VBM). Thus, the states governing the TE properties lie in the "skin-deep" region from the VBM. For electron-doped TE systems, the electron carriers responsible for their thermopower should also be associated with the electronic states lying within ∼0.5 eV of the conduction band minimum (CBM). This makes it difficult to predict TE materials of high zT. One faces a similar skin-deep phenomenon in searching for superconductors of high transition temperature because the transition from a normal metallic to a superconducting state involves the normal metallic states in the vicinity of the Fermi level EF. Other skin-deep phenomena in metallic compounds include the formation of charge density wave (CDW), which involves the electronic states in the vicinity of their Fermi levels. For magnetic materials of transition-metal ions, the preferred orientation of their spin moments is a skin-deep phenomenon because it is governed by the interaction between the highest-occupied and the lowest unoccupied d-states of these ions. In the present work we probe the issues concerning how to find the possible range of thermopower expected for a given TE material and hence how to recognize what experimental values of thermopower are expected or unusual. For these purposes, we analyze the accumulated S and n data on the three well-studied TE materials, Bi2Q3, PbQ, and BiCuQO (Q = Se, Te), as representative examples, in terms of the ideal theoretical S-vs-n relationships, which we determine for their defect-free Bi2Q3, PbQ, and BiCuQO structures using density functional theory (DFT) calculations under the rigid band approximation. We find that the general trends in the experimental S-vs-n relationships are reasonably well explained by the calculated S-vs-n relationships, and the carrier densities covering these relationships are associated with the states lying within ∼0.5 eV from their band edges confirming the skin-deep nature of their thermoelectric properties. Despite the fact that these TE materials are not one-dimensional (1D) in structure, they mostly possess sharp density-of-state peaks around their band edges because their band dispersions have a hidden 1D character so their thermopower is generally high in magnitude.

9.
Natl Sci Rev ; 9(7): nwac017, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35983369

RESUMO

As early as 2001, the need for the 'functional motif theory' was pointed out, to assist the rational design of functional materials. The properties of materials are determined by their functional motifs and how they are arranged in the materials. Uncovering functional motifs and their arrangements is crucial in understanding the properties of materials and rationally designing new materials of desired properties. The functional motifs of materials are the critical microstructural units (e.g. constituent components and building blocks) that play a decisive role in generating certain material functions, and can not be replaced with other structural units without the loss, or significant suppression, of relevant functions. The role of functional motifs and their arrangement in materials, with representative examples, is presented. The microscopic structures of these examples can be classified into six types on a length scale smaller than ∼10 nm with maximum subatomic resolution, i.e. crystal, magnetic, aperiodic, defect, local and electronic structures. Functional motif analysis can be employed in the function-oriented design of materials, as elucidated by taking infrared non-linear optical materials as an example. Machine learning is more efficient in predicting material properties and screening materials with high efficiency than high-throughput experimentation and high-throughput calculations. In order to extract functional motifs and find their quantitative relationships, the development of sufficiently reliable databases for material structures and properties is imperative.

10.
J Am Chem Soc ; 144(36): 16272-16275, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044247

RESUMO

We examined what interactions control the sign and strength of the interlayer coupling in van der Waals ferromagnets such as Fe3-xGeTe2, Cr2Ge2Te6, CrI3, and VI3 to find that high-spin orbital interactions across the van der Waals gaps are a key to understanding their ferromagnetism. Interlayer ferromagnetic coupling in Fe3-xGeTe2, Cr2Ge2Te6, and CrI3 is governed by the high-spin two-orbital two-electron destabilization, but that in VI3 by the high-spin four-orbital two-electron stabilization. These interactions explain a number of seemingly puzzling observations in van der Waals ferromagnets.

11.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407895

RESUMO

The static and dynamic magnetic properties and the specific heat of K2Ni2TeO6 and Li2Ni2TeO6 were examined and it was found that they undergo a long-range ordering at TN = 22.8 and 24.4 K, respectively, but exhibit a strong short-range order. At high temperature, the magnetic susceptibilities of K2Ni2TeO6 and Li2Ni2TeO6 are described by a Curie-Weiss law, with Curie-Weiss temperatures Θ of approximately -13 and -20 K, respectively, leading to the effective magnetic moment of about 4.46 ± 0.01 µB per formula unit, as expected for Ni2+ (S = 1) ions. In the paramagnetic region, the ESR spectra of K2Ni2TeO6 and Li2Ni2TeO6 show a single Lorentzian-shaped line characterized by the isotropic effective g-factor, g = 2.19 ± 0.01. The energy-mapping analysis shows that the honeycomb layers of A2Ni2TeO6 (A = K, Li) and Li3Ni2SbO6 adopt a zigzag order, in which zigzag ferromagnetic chains are antiferromagnetically coupled, because the third nearest-neighbor spin exchanges are strongly antiferromagnetic while the first nearest-neighbor spin exchanges are strongly ferromagnetic, and that adjacent zigzag-ordered honeycomb layers prefer to be ferromagnetically coupled. The short-range order of the zigzag-ordered honeycomb lattices of K2Ni2TeO6 and Li2Ni2TeO6 is equivalent to that of an antiferromagnetic uniform chain, and is related to the short-range order of the ferromagnetic chains along the direction perpendicular to the chains.

12.
Angew Chem Int Ed Engl ; 61(15): e202116404, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156284

RESUMO

Heat-induced blueshift (HIB) observed in many luminescent materials is a puzzling phenomenon that has remained unexplained for decades. By using the high-throughput first-principles calculations and energy-screening techniques, we generated a number of model structures for five phosphors, RbLi[Li3 SiO4 ]2 :Eu2+ , Na[Li3 SiO4 ]:Eu2+ , K[Li3 SiO4 ]:Eu2+ , Sr[LiAl3 N4 ]:Eu2+ , and Ca[LiAl3 N4 ]:Eu2+ . Our analyses suggest, to a first approximation, a logarithmic energy dependence on the nearest distance between the dopant and the metal-cation vacancy. By identifying the 5 d → 4 f transition energies from the electronic structures calculated for the screened model structures, we show that the vibration of the Eu2+ ion lying in an asymmetric and anharmonic potential well couples with the electronic states, leading to their HIB phenomena.

13.
Inorg Chem ; 61(9): 3843-3850, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35195990

RESUMO

Density functional theory calculations were carried out to probe the nature of the electronic structure change in TiPO4 before and after its spin-Peierls distortion at 74.5 K, which is characterized by the dimerization in the chains of Ti3+ (d1) ions present in TiPO4. These calculations suggest strongly that the electronic state of TiPO4 is magnetic insulating before the distortion, but becomes nonmagnetic insulating after the distortion. Consistent with this suggestion, the phonon dispersion relations calculated for TiPO4 show that the undistorted TiPO4 is stable, while the distorted TiPO4 is not, if each Ti3+ ion has a spin moment, and that the opposite is true if each Ti3+ ion has no spin moment. These observations suggest that the driving force for the spin-Peierls distortion is the formation of direct metal-metal bonds leading to the dimerized chains of Ti3+ ions. The abrupt change in the electronic structures from a magnetic insulating state to a nonmagnetic insulating state explains why the spin-Peierls distortion of TiPO4 exhibits a first-order character. Although the two electronic states of TiPO4 before and after the distortion have a band gap, the substantial spin-Peierls distortion is found to enhance the thermoelectric properties of TiPO4.

14.
J Phys Chem Lett ; 12(46): 11399-11405, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788048

RESUMO

Sr2Be2B2O7 (SBBO) has long been considered as one of the most promising deep-ultraviolet nonlinear optical materials, but its crystal structure described by space group P6̅c2 in previous studies has remained questionable. On the basis of first-principles calculations coupled with the high-throughput crystal structure prediction method, we found three energetically favorable structures for SBBO with space groups Cm, Pm, and P6̅. These structures and a superstructure of space group Pm-S derived from the Cm structure were refined by the Rietveld method using the available powder X-ray diffraction data. These analyses show that the Pm-S structure is the best one, but its parent Cm structure is almost equally good and has the advantage of having higher symmetry. Via atom response theory analysis, we resolved the cause for the second-harmonic generation (SHG) responses of SBBO at the atomic and orbital level to elucidate the importance of local inversion symmetry in reducing the SHG response.

15.
Molecules ; 26(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771033

RESUMO

John B [...].

16.
Inorg Chem ; 60(20): 15124-15127, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606249

RESUMO

The magnetic structure of NaYMnWO6 was determined by neutron powder diffraction measurements. Below 9 K, the magnetic structure is a helix to wave vector k = (0, 0.447, 1/2), in contrast with NaYNiWO6, which shows a transverse spin density wave with k = (0.47, 0, 0.49). By analyzing the differences in the spin exchanges of NaYMnWO6 and NaYNiWO6, and in the magnetic anisotropies of the Mn2+ (d5, S = 5/2) and the Ni2+ (d2, S = 1) ions, we show what factors govern the propagation direction of a noncollinear magnetic structure and whether it becomes a helix or a cycloid.

17.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807780

RESUMO

We examined the magnetic ground states, the preferred spin orientations and the spin exchanges of four layered phases MPS3 (M = Mn, Fe, Co, Ni) by first principles density functional theory plus onsite repulsion (DFT + U) calculations. The magnetic ground states predicted for MPS3 by DFT + U calculations using their optimized crystal structures are in agreement with experiment for M = Mn, Co and Ni, but not for FePS3. DFT + U calculations including spin-orbit coupling correctly predict the observed spin orientations for FePS3, CoPS3 and NiPS3, but not for MnPS3. Further analyses suggest that the ||z spin direction observed for the Mn2+ ions of MnPS3 is caused by the magnetic dipole-dipole interaction in its magnetic ground state. Noting that the spin exchanges are determined by the ligand p-orbital tails of magnetic orbitals, we formulated qualitative rules governing spin exchanges as the guidelines for discussing and estimating the spin exchanges of magnetic solids. Use of these rules allowed us to recognize several unusual exchanges of MPS3, which are mediated by the symmetry-adapted group orbitals of P2S64- and exhibit unusual features unknown from other types of spin exchanges.


Assuntos
Ânions/química , Metais/química , Marcadores de Spin , Anisotropia , Teoria da Densidade Funcional , Magnetismo , Modelos Moleculares
18.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557181

RESUMO

The effective spin Hamiltonian method has drawn considerable attention for its power to explain and predict magnetic properties in various intriguing materials. In this review, we summarize different types of interactions between spins (hereafter, spin interactions, for short) that may be used in effective spin Hamiltonians as well as the various methods of computing the interaction parameters. A detailed discussion about the merits and possible pitfalls of each technique of computing interaction parameters is provided.


Assuntos
Fenômenos Magnéticos , Imãs , Modelos Teóricos
19.
Molecules ; 26(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498484

RESUMO

In this review on spin exchanges, written to provide guidelines useful for finding the spin lattice relevant for any given magnetic solid, we discuss how the values of spin exchanges in transition metal magnetic compounds are quantitatively determined from electronic structure calculations, which electronic factors control whether a spin exchange is antiferromagnetic or ferromagnetic, and how these factors are related to the geometrical parameters of the spin exchange path. In an extended solid containing transition metal magnetic ions, each metal ion M is surrounded with main-group ligands L to form an MLn polyhedron (typically, n = 3-6), and the unpaired spins of M are represented by the singly-occupied d-states (i.e., the magnetic orbitals) of MLn. Each magnetic orbital has the metal d-orbital combined out-of-phase with the ligand p-orbitals; therefore, the spin exchanges between adjacent metal ions M lead not only to the M-L-M-type exchanges, but also to the M-L…L-M-type exchanges in which the two metal ions do not share a common ligand. The latter can be further modified by d0 cations A such as V5+ and W6+ to bridge the L…L contact generating M-L…A…L-M-type exchanges. We describe several qualitative rules for predicting whether the M-L…L-M and M-L…A…L-M-type exchanges are antiferromagnetic or ferromagnetic by analyzing how the ligand p-orbitals in their magnetic orbitals (the ligand p-orbital tails, for short) are arranged in the exchange paths. Finally, we illustrate how these rules work by analyzing the crystal structures and magnetic properties of four cuprates of current interest: -CuV2O6, LiCuVO4, (CuCl)LaNb2O7, and Cu3(CO3)2(OH)2.


Assuntos
Íons/química , Magnetismo , Metais/química , Teoria Quântica , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Estrutura Molecular , Fenômenos Físicos , Elementos de Transição
20.
Inorg Chem ; 59(24): 18319-18324, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289382

RESUMO

Neutron diffraction studies on magnetic solids composed of axially elongated CoO4X2 (X = Cl, Br, S, Se) octahedra show that the ordered magnetic moments of their high-spin Co2+ (d7, S = 3/2) ions are greater than 3 µB, i.e., the spin moment expected for S = 3/2 ions, and increase almost linearly from 3.22 to 4.45 µB as the bond-length ratio rCo-X/rCo-O increases from 1.347 to 1.659 where rCo-X and rCo-O are the Co-X and Co-O bond lengths, respectively. These observations imply that the orbital moments of the Co2+ ions increase linearly from 0.22 to 1.45 µB with increasing the rCo-X/rCo-O ratio from 1.347 to 1.659. We probed this implication by examining the condition for unquenched orbital moment and also by evaluating the magnetic moments of the Co2+ ions based on DFT+U+SOC calculations for those systems of the CoO4X2 octahedra. Our work shows that the orbital moments of the Co2+ ions are essentially quenched and, hence, that the observations of the neutron diffraction studies are not explained by the current theory of magnetic moments. This discrepancy between experiment and theory urges one to check the foundations of the current theory of magnetic moments as well as the current method of neutron diffraction refinements for ordered magnetic structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA