Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(9): 2308-2322, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39227714

RESUMO

Swimming bacteria navigate chemical gradients using temporal sensing to detect changes in concentration over time. Here we show that surface-attached bacteria use a fundamentally different mode of sensing during chemotaxis. We combined microfluidic experiments, massively parallel cell tracking and fluorescent reporters to study how Pseudomonas aeruginosa senses chemical gradients during pili-based 'twitching' chemotaxis on surfaces. Unlike swimming cells, we found that temporal changes in concentration did not induce motility changes in twitching cells. We then quantified the chemotactic behaviour of stationary cells by following changes in the sub-cellular localization of fluorescent proteins as cells are exposed to a gradient that alternates direction. These experiments revealed that P. aeruginosa cells can directly sense differences in concentration across the lengths of their bodies, even in the presence of strong temporal fluctuations. Our work thus overturns the widely held notion that bacterial cells are too small to directly sense chemical gradients in space.


Assuntos
Quimiotaxia , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Fímbrias Bacterianas/metabolismo , Microfluídica/métodos , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética
2.
Nat Commun ; 13(1): 7608, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494355

RESUMO

Bacteria commonly live in surface-associated communities where steep gradients of antibiotics and other chemical compounds can occur. While many bacterial species move on surfaces, we know surprisingly little about how such antibiotic gradients affect cell motility. Here, we study the behaviour of the opportunistic pathogen Pseudomonas aeruginosa in stable spatial gradients of several antibiotics by tracking thousands of cells in microfluidic devices as they form biofilms. Unexpectedly, these experiments reveal that bacteria use pili-based ('twitching') motility to navigate towards antibiotics. Our analyses suggest that this behaviour is driven by a general response to the effects of antibiotics on cells. Migrating bacteria reach antibiotic concentrations hundreds of times higher than their minimum inhibitory concentration within hours and remain highly motile. However, isolating cells - using fluid-walled microfluidic devices - reveals that these bacteria are terminal and unable to reproduce. Despite moving towards their death, migrating cells are capable of entering a suicidal program to release bacteriocins that kill other bacteria. This behaviour suggests that the cells are responding to antibiotics as if they come from a competing colony growing nearby, inducing them to invade and attack. As a result, clinical antibiotics have the potential to lure bacteria to their death.


Assuntos
Fímbrias Bacterianas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/fisiologia , Fímbrias Bacterianas/fisiologia , Bactérias/metabolismo , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo
3.
ACS Appl Mater Interfaces ; 14(22): 25209-25219, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604799

RESUMO

Microfluidic devices are widely used in many fields of biology, but a key limitation is that cells are typically surrounded by solid walls, making it hard to access those that exhibit a specific phenotype for further study. Here, we provide a general and flexible solution to this problem that exploits the remarkable properties of microfluidic circuits with fluid walls─transparent interfaces between culture media and an immiscible fluorocarbon that are easily pierced with pipets. We provide two proofs of concept in which specific cell subpopulations are isolated and recovered: (i) murine macrophages chemotaxing toward complement component 5a and (ii) bacteria (Pseudomonas aeruginosa) in developing biofilms that migrate toward antibiotics. We build circuits in minutes on standard Petri dishes, add cells, pump in laminar streams so molecular diffusion creates attractant gradients, acquire time-lapse images, and isolate desired subpopulations in real time by building fluid walls around migrating cells with an accuracy of tens of micrometers using 3D printed adaptors that convert conventional microscopes into wall-building machines. Our method allows live cells of interest to be easily extracted from microfluidic devices for downstream analyses.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Animais , Difusão , Dispositivos Lab-On-A-Chip , Camundongos , Microfluídica/métodos , Pseudomonas aeruginosa
4.
Nat Commun ; 8(1): 816, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018186

RESUMO

Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.


Assuntos
Quimiotaxia/fisiologia , Infertilidade Masculina/diagnóstico , Microfluídica , Análise do Sêmen , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Humanos , Infertilidade Masculina/terapia , Masculino , Técnicas de Reprodução Assistida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA