Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2002): 20230275, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37403504

RESUMO

The structure and function of biochemical and developmental pathways determine the range of accessible phenotypes, which are the substrate for evolutionary change. Accordingly, we expect that observed phenotypic variation across species is strongly influenced by pathway structure, with different phenotypes arising due to changes in activity along pathway branches. Here, we use flower colour as a model to investigate how the structure of pigment pathways shapes the evolution of phenotypic diversity. We focus on the phenotypically diverse Petunieae clade in the nightshade family, which contains ca 180 species of Petunia and related genera, as a model to understand how flavonoid pathway gene expression maps onto pigment production. We use multivariate comparative methods to estimate co-expression relationships between pathway enzymes and transcriptional regulators, and then assess how expression of these genes relates to the major axes of variation in floral pigmentation. Our results indicate that coordinated shifts in gene expression predict transitions in both total anthocyanin levels and pigment type, which, in turn, incur trade-offs with the production of UV-absorbing flavonol compounds. These findings demonstrate that the intrinsic structure of the flavonoid pathway and its regulatory architecture underlies the accessibility of pigment phenotypes and shapes evolutionary outcomes for floral pigment production.


Assuntos
Petunia , Petunia/genética , Petunia/metabolismo , Cor , Flavonoides/metabolismo , Pigmentação/genética , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Integr Comp Biol ; 63(6): 1340-1351, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37327076

RESUMO

Flowers have evolved remarkable diversity in petal color, in large part due to pollinator-mediated selection. This diversity arises from specialized metabolic pathways that generate conspicuous pigments. Despite the clear link between flower color and floral pigment production, quantitative models inferring predictive relationships between pigmentation and reflectance spectra have not been reported. In this study, we analyze a dataset consisting of hundreds of natural Penstemon hybrids that exhibit variation in flower color, including blue, purple, pink, and red. For each individual hybrid, we measured anthocyanin pigment content and petal spectral reflectance. We found that floral pigment quantities are correlated with hue, chroma, and brightness as calculated from petal spectral reflectance data: hue is related to the relative amounts of delphinidin vs. pelargonidin pigmentation, whereas brightness and chroma are correlated with the total anthocyanin pigmentation. We used a partial least squares regression approach to identify predictive relationships between pigment production and petal reflectance. We find that pigment quantity data provide robust predictions of petal reflectance, confirming a pervasive assumption that differences in pigmentation should predictably influence flower color. Moreover, we find that reflectance data enables accurate inferences of pigment quantities, where the full reflectance spectra provide much more accurate inference of pigment quantities than spectral attributes (brightness, chroma, and hue). Our predictive framework provides readily interpretable model coefficients relating spectral attributes of petal reflectance to underlying pigment quantities. These relationships represent key links between genetic changes affecting anthocyanin production and the ecological functions of petal coloration.


Assuntos
Antocianinas , Penstemon , Animais , Pigmentação/genética , Cor
3.
Ecol Evol ; 12(3): e8583, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342598

RESUMO

Syndromes, wherein multiple traits evolve convergently in response to a shared selective driver, form a central concept in ecology and evolution. Recent work has questioned the existence of some classic syndromes, such as pollination and seed dispersal syndromes. Here, we discuss some of the major issues that have afflicted research into syndromes in macroevolution and ecology. First, correlated evolution of traits and hypothesized selective drivers is often relied on as the only evidence for adaptation of those traits to those hypothesized drivers, without supporting evidence. Second, the selective driver is often inferred from a combination of traits without explicit testing. Third, researchers often measure traits that are easy for humans to observe rather than measuring traits that are suited to testing the hypothesis of adaptation. Finally, species are often chosen for study because of their striking phenotypes, which leads to the illusion of syndromes and divergence. We argue that these issues can be avoided by combining studies of trait variation across entire clades or communities with explicit tests of adaptive hypotheses and that taking this approach will lead to a better understanding of syndrome-like evolution and its drivers.

4.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212724

RESUMO

Dissecting the relationship between gene function and substitution rates is key to understanding genome-wide patterns of molecular evolution. Biochemical pathways provide powerful systems for investigating this relationship because the functional role of each gene is often well characterized. Here, we investigate the evolution of the flavonoid pigment pathway in the colorful Petunieae clade of the tomato family (Solanaceae). This pathway is broadly conserved in plants, both in terms of its structural elements and its MYB, basic helix-loop-helix, and WD40 transcriptional regulators, and its function has been extensively studied, particularly in model species of petunia. We built a phylotranscriptomic data set for 69 species of Petunieae to infer patterns of molecular evolution across pathway genes and across lineages. We found that transcription factors exhibit faster rates of molecular evolution (dN/dS) than their targets, with the highly specialized MYB genes evolving fastest. Using the largest comparative data set to date, we recovered little support for the hypothesis that upstream enzymes evolve slower than those occupying more downstream positions, although expression levels do predict molecular evolutionary rates. Although shifts in floral pigmentation were only weakly related to changes affecting coding regions, we found a strong relationship with the presence/absence patterns of MYB transcripts. Intensely pigmented species express all three main MYB anthocyanin activators in petals, whereas pale or white species express few or none. Our findings reinforce the notion that pathway regulators have a dynamic history, involving higher rates of molecular evolution than structural components, along with frequent changes in expression during color transitions.


Assuntos
Flores , Fatores de Transcrição , Antocianinas , Flavonoides/genética , Flavonoides/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo
5.
Curr Opin Microbiol ; 65: 15-23, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34717259

RESUMO

Bacterial microcompartments (BMCs) are protein-encapsulated compartments found across at least 23 bacterial phyla. BMCs contain a variety of metabolic processes that share the commonality of toxic or volatile intermediates, oxygen-sensitive enzymes and cofactors, or increased substrate concentration for magnified reaction rates. These compartmentalized reactions have been computationally modeled to explore the encapsulated dynamics, ask evolutionary-based questions, and develop a more systematic understanding required for the engineering of novel BMCs. Many crucial aspects of these systems remain unknown or unmeasured, such as substrate permeabilities across the protein shell, feasibility of pH gradients, and transport rates of associated substrates into the cell. This review explores existing BMC models, dominated in the literature by cyanobacterial carboxysomes, and highlights potentially important areas for exploration.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Simulação por Computador , Organelas/metabolismo
6.
Evol Lett ; 5(1): 61-74, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552536

RESUMO

Evolutionary genetic studies have uncovered abundant evidence for genomic hotspots of phenotypic evolution, as well as biased patterns of mutations at those loci. However, the theoretical basis for this concentration of particular types of mutations at particular loci remains largely unexplored. In addition, historical contingency is known to play a major role in evolutionary trajectories, but has not been reconciled with the existence of such hotspots. For example, do the appearance of hotspots and the fixation of different types of mutations at those loci depend on the starting state and/or on the nature and direction of selection? Here, we use a computational approach to examine these questions, focusing the anthocyanin pigmentation pathway, which has been extensively studied in the context of flower color transitions. We investigate two transitions that are common in nature, the transition from blue to purple pigmentation and from purple to red pigmentation. Both sets of simulated transitions occur with a small number of mutations at just four loci and show strikingly similar peaked shapes of evolutionary trajectories, with the mutations of the largest effect occurring early but not first. Nevertheless, the types of mutations (biochemical vs. regulatory) as well as their direction and magnitude are contingent on the particular transition. These simulated color transitions largely mirror findings from natural flower color transitions, which are known to occur via repeated changes at a few hotspot loci. Still, some types of mutations observed in our simulated color evolution are rarely observed in nature, suggesting that pleiotropic effects further limit the trajectories between color phenotypes. Overall, our results indicate that the branching structure of the pathway leads to a predictable concentration of evolutionary change at the hotspot loci, but the types of mutations at these loci and their order is contingent on the evolutionary context.

7.
Mol Biol Evol ; 38(6): 2227-2239, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33528559

RESUMO

Some have hypothesized that ancestral proteins were, on average, less specific than their descendants. If true, this would provide a universal axis along which to organize protein evolution and suggests that reconstructed ancestral proteins may be uniquely powerful tools for protein engineering. Ancestral sequence reconstruction studies are one line of evidence used to support this hypothesis. Previously, we performed such a study, investigating the evolution of peptide-binding specificity for the paralogs S100A5 and S100A6. The modern proteins appeared more specific than their last common ancestor (ancA5/A6), as each paralog bound a subset of the peptides bound by ancA5/A6. In this study, we revisit this transition, using quantitative phage display to measure the interactions of 30,533 random peptides with human S100A5, S100A6, and ancA5/A6. This unbiased screen reveals a different picture. While S100A5 and S100A6 do indeed bind to a subset of the peptides recognized by ancA5/A6, they also acquired new peptide partners outside of the set recognized by ancA5/A6. Our previous work showed that ancA5/A6 had lower specificity than its descendants when measured against biological targets; our new work shows that ancA5/A6 has similar specificity to the modern proteins when measured against a random set of peptide targets. This demonstrates that altered biological specificity does not necessarily indicate altered intrinsic specificity, and sounds a cautionary note for using ancestral reconstruction studies with biological targets as a means to infer global evolutionary trends in specificity.


Assuntos
Proteínas de Ciclo Celular/genética , Evolução Molecular , Proteína A6 Ligante de Cálcio S100/genética , Proteínas S100/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Mapas de Interação de Proteínas , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo
8.
Protein Sci ; 29(11): 2259-2273, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979254

RESUMO

Many proteins interact with short linear regions of target proteins. For some proteins, however, it is difficult to identify a well-defined sequence motif that defines its target peptides. To overcome this difficulty, we used supervised machine learning to train a model that treats each peptide as a collection of easily-calculated biochemical features rather than as an amino acid sequence. As a test case, we dissected the peptide-recognition rules for human S100A5 (hA5), a low-specificity calcium binding protein. We trained a Random Forest model against a recently released, high-throughput phage display dataset collected for hA5. The model identifies hydrophobicity and shape complementarity, rather than polar contacts, as the primary determinants of peptide binding specificity in hA5. We tested this hypothesis by solving a crystal structure of hA5 and through computational docking studies of diverse peptides onto hA5. These structural studies revealed that peptides exhibit multiple binding modes at the hA5 peptide interface-all of which have few polar contacts with hA5. Finally, we used our trained model to predict new, plausible binding targets in the human proteome. This revealed a fragment of the protein α-1-syntrophin that binds to hA5. Our work helps better understand the biochemistry and biology of hA5, as well as demonstrating how high-throughput experiments coupled with machine learning of biochemical features can reveal the determinants of binding specificity in low-specificity proteins.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Membrana/química , Modelos Moleculares , Proteínas Musculares/química , Peptídeos/química , Proteínas S100/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Proteínas S100/genética , Proteínas S100/metabolismo
9.
Biochemistry ; 57(18): 2578-2583, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29620867

RESUMO

Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .


Assuntos
Calorimetria/métodos , Software , Termodinâmica , Teorema de Bayes , Método de Monte Carlo , Interface Usuário-Computador
10.
Biochemistry ; 57(5): 684-695, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29240404

RESUMO

Many regulatory proteins bind peptide regions of target proteins and modulate their activity. Such regulatory proteins can often interact with highly diverse target peptides. In many instances, it is not known if the peptide-binding interface discriminates targets in a biological context, or whether biological specificity is achieved exclusively through external factors such as subcellular localization. We used an evolutionary biochemical approach to distinguish these possibilities for two such low-specificity proteins: S100A5 and S100A6. We used isothermal titration calorimetry to study the binding of peptides with diverse sequence and biochemistry to human S100A5 and S100A6. These proteins bound distinct, but overlapping, sets of peptide targets. We then studied the peptide binding properties of orthologs sampled from across five amniote species. Binding specificity was conserved along all lineages, for the last 320 million years, despite the low specificity of each protein. We used ancestral sequence reconstruction to determine the binding specificity of the last common ancestor of the paralogs. The ancestor bound the entire set of peptides bound by modern S100A5 and S100A6 proteins, suggesting that paralog specificity evolved via subfunctionalization. To rule out the possibility that specificity is conserved because it is difficult to modify, we identified a single historical mutation that, when reverted in human S100A5, gave it the ability to bind an S100A6-specific peptide. These results reveal strong evolutionary constraints on peptide binding specificity. Despite being able to bind a large number of targets, the specificity of S100 peptide interfaces is likely important for the biology of these proteins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Evolução Molecular , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sinalização do Cálcio , Calorimetria/métodos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sequência Conservada , Duplicação Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação de Sentido Incorreto , Biblioteca de Peptídeos , Peptídeos/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Proteína A6 Ligante de Cálcio S100/química , Proteína A6 Ligante de Cálcio S100/genética , Proteínas S100/química , Proteínas S100/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Vertebrados/genética
11.
BMC Biophys ; 10: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201357

RESUMO

BACKGROUND: S100A5 is a calcium binding protein found in a small subset of amniote tissues. Little is known about the biological roles of S100A5, but it may be involved in inflammation and olfactory signaling. Previous work indicated that S100A5 displays antagonism between binding of Ca2+ and Cu2+ ions-one of the most commonly cited features of the protein. We set out to characterize the interplay between Ca2+ and Cu2+ binding by S100A5 using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and analytical ultracentrifugation (AUC). RESULTS: We found that human S100A5 is capable of binding both Cu2+ and Ca2+ ions simultaneously. The wildtype protein was extremely aggregation-prone in the presence of Cu2+ and Ca2+. A Cys-free version of S100A5, however, was not prone to precipitation or oligomerization. Mutation of the cysteines does not disrupt the binding of either Ca2+ or Cu2+ to S100A5. In the Cys-free background, we measured Ca2+ and Cu2+ binding in the presence and absence of the other metal using ITC. Saturating concentrations of Ca2+ or Cu2+ do not disrupt the binding of one another. Ca2+ and Cu2+ binding induce structural changes in S100A5, which are measurable using CD spectroscopy. We show via sedimentation velocity AUC that the wildtype protein is prone to the formation of soluble oligomers, which are not present in Cys-free samples. CONCLUSIONS: S100A5 can bind Ca2+ and Cu2+ ions simultaneously and independently. This observation is in direct contrast to previously-reported antagonism between binding of Cu2+ and Ca2+ ions. The previous result is likely due to metal-dependent aggregation. Little is known about the biology of S100A5, so an accurate understanding of the biochemistry is necessary to make informed biological hypotheses. Our observations suggest the possibility of independent biological functions for Cu2+ and Ca2+ binding by S100A5.

12.
PLoS One ; 11(10): e0164740, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764152

RESUMO

The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs-as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica-bind these metals with µM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile.


Assuntos
Cobre/metabolismo , Análise Mutacional de DNA/métodos , Proteínas S100/química , Proteínas S100/metabolismo , Zinco/metabolismo , Animais , Sítios de Ligação , Calorimetria , Evolução Molecular , Humanos , Modelos Moleculares , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas S100/genética , Urocordados/metabolismo
13.
Curr Opin Struct Biol ; 38: 37-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27288744

RESUMO

Were ancient proteins systematically different than modern proteins? The answer to this question is profoundly important, shaping how we understand the origins of protein biochemical, biophysical, and functional properties. Ancestral sequence reconstruction (ASR), a phylogenetic approach to infer the sequences of ancestral proteins, may reveal such trends. We discuss two proposed trends: a transition from higher to lower thermostability and a tendency for proteins to acquire higher specificity over time. We review the evidence for elevated ancestral thermostability and discuss its possible origins in a changing environmental temperature and/or reconstruction bias. We also conclude that there is, as yet, insufficient data to support a trend from promiscuity to specificity. Finally, we propose future work to understand these proposed evolutionary trends.


Assuntos
Proteínas/química , Proteínas/metabolismo , Temperatura , Animais , Evolução Molecular , Filogenia , Estabilidade Proteica , Proteínas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA