Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22488, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110478

RESUMO

Single nucleotide polymorphism (SNP) markers are powerful tools for investigating population structures, linkage analysis, and genome-wide association studies, as well as for breeding and population management. The availability of SNP markers has been limited to the most commercially important timber species, primarily due to the cost of genome sequencing required for SNP discovery. In this study, a combination of reference-based and reference-free approaches were used to identify SNPs in Nordmann fir (Abies nordmanniana), a species previously lacking genomic sequence information. Using a combination of a genome assembly of the closely related Silver fir (Abies alba) species and a de novo assembly of low-copy regions of the Nordmann fir genome, we identified a high density of reliable SNPs. Reference-based approaches identified two million SNPs in common between the Silver fir genome and low-copy regions of Nordmann fir. A combination of one reference-free and two reference-based approaches identified 250 shared SNPs. A subset of 200 SNPs were used to genotype 342 individuals and thereby tested and validated in the context of identity analysis and/or clone identification. The tested SNPs successfully identified all ramets per clone and five mislabeled individuals via identity and genomic relatedness analysis. The identified SNPs will be used in ad hoc breeding of Nordmann fir in Denmark.


Assuntos
Abies , Humanos , Genótipo , Abies/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Sequenciamento de Nucleotídeos em Larga Escala , Genoma de Planta
2.
Front Plant Sci ; 14: 1237966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126017

RESUMO

Several specialised insects can manipulate normal plant development to induce a highly organised structure known as a gall, which represents one of the most complex interactions between insects and plants. Thus far, the mechanism for insect-induced plant galls has remained elusive. To study the induction mechanism of insect galls, we selected the gall induced by Iatrophobia brasiliensis (Diptera: Cecidomyiidae) in cassava (Euphorbiaceae: Manihot esculenta Crantz) as our model. PCR-based molecular markers and deep metagenomic sequencing data were employed to analyse the gall microbiome and to test the hypothesis that gall cells are genetically transformed by insect vectored bacteria. A shotgun sequencing discrimination approach was implemented to selectively discriminate between foreign DNA and the reference host plant genome. Several known candidate insertion sequences were identified, the most significant being DNA sequences found in bacterial genes related to the transcription regulatory factor CadR, cadmium-transporting ATPase encoded by the cadA gene, nitrate transport permease protein (nrtB gene), and arsenical pump ATPase (arsA gene). In addition, a DNA fragment associated with ubiquitin-like gene E2 was identified as a potential accessory genetic element involved in gall induction mechanism. Furthermore, our results suggest that the increased quality and rapid development of gall tissue are mostly driven by microbiome enrichment and the acquisition of critical endophytes. An initial gall-like structure was experimentally obtained in M. esculenta cultured tissues through inoculation assays using a Rhodococcus bacterial strain that originated from the inducing insect, which we related to the gall induction process. We provide evidence that the modification of the endophytic microbiome and the genetic transformation of plant cells in M. esculenta are two essential requirements for insect-induced gall formation. Based on these findings and having observed the same potential DNA marker in galls from other plant species (ubiquitin-like gene E2), we speculate that bacterially mediated genetic transformation of plant cells may represent a more widespread gall induction mechanism found in nature.

3.
New Phytol ; 238(4): 1546-1561, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36772855

RESUMO

Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal pathogen of wheat that can rapidly evolve to defeat wheat powdery mildew (Pm) resistance genes. Despite periodic regional deployment of the Pm1a resistance gene in US wheat production, Bgt strains that overcome Pm1a have been notably nonpersistent in the United States, while on other continents, they are more widely established. A genome-wide association study (GWAS) was conducted to map sequence variants associated with Pm1a virulence in 216 Bgt isolates from six countries, including the United States. A virulence variant apparently unique to Bgt isolates from the United States was detected in the previously mapped gene AvrPm1a (BgtE-5612) on Bgt chromosome 6; an in vitro growth assay suggested no fitness reduction associated with this variant. A gene on Bgt chromosome 8, Bgt-51526, was shown to function as a second determinant of Pm1a virulence, and despite < 30% amino acid identity, BGT-51526 and BGTE-5612 were predicted to share > 85% of their secondary structure. A co-expression study in Nicotiana benthamiana showed that BGTE-5612 and BGT-51526 each produce a PM1A-dependent hypersensitive response. More than one member of a B. graminis effector family can be recognized by a single wheat immune receptor, and a two-gene model is necessary to explain virulence to Pm1a.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
4.
Mol Ecol Resour ; 22(2): 695-710, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34383377

RESUMO

We performed gene and genome targeted SNP discovery towards the development of a genome-wide, multispecies genotyping array for tropical pines. Pooled RNA-seq data from shoots of seedlings from five tropical pine species was used to identify transcript-based SNPs resulting in 1.3 million candidate Affymetrix SNP probe sets. In addition, we used a custom 40 K probe set to perform capture-seq in pooled DNA from 81 provenances representing the natural ranges of six tropical pine species in Mexico and Central America resulting in 563 K candidate SNP probe sets. Altogether, 300 K RNA-seq (72%) and 120 K capture-seq (28%) derived SNP probe sets were tiled on a 420 K screening array that was used to genotype 576 trees representing the 81 provenances and commercial breeding material. Based on the screening array results, 50 K SNPs were selected for commercial SNP array production including 20 K polymorphic SNPs for P. patula, P. tecunumanii, P. oocarpa and P. caribaea, 15 K for P. greggii and P. maximinoi, 13 K for P. elliottii and 8K for P. pseudostrobus. We included 9.7 K ancestry informative SNPs that will be valuable for species and hybrid discrimination. Of the 50 K SNP markers, 25% are polymorphic in only one species, while 75% are shared by two or more species. The Pitro50K SNP chip will be useful for population genomics and molecular breeding in this group of pine species that, together with their hybrids, represent the majority of fast-growing tropical and subtropical pine plantations globally.


Assuntos
Pinus , Árvores , Genoma , Genótipo , Pinus/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Árvores/genética
5.
Appl Plant Sci ; 9(6): e11439, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34268018

RESUMO

PREMISE: An informatics approach was used for the construction of an Axiom genotyping array from heterogeneous, high-throughput sequence data to assess the complex genome of loblolly pine (Pinus taeda). METHODS: High-throughput sequence data, sourced from exome capture and whole genome reduced-representation approaches from 2698 trees across five sequence populations, were analyzed with the improved genome assembly and annotation for the loblolly pine. A variant detection, filtering, and probe design pipeline was developed to detect true variants across and within populations. From 8.27 million variants, a total of 642,275 were evaluated and 423,695 of those were screened across a range-wide population. RESULTS: The final informatics and screening approach delivered an Axiom array representing 46,439 high-confidence variants to the forest tree breeding and genetics community. Based on the annotated reference genome, 34% were located in or directly upstream or downstream of genic regions. DISCUSSION: The Pita50K array represents a genome-wide resource developed from sequence data for an economically important conifer, loblolly pine. It uniquely integrates independent projects that assessed trees sampled across the native range. The challenges associated with the large and repetitive genome are addressed in the development of this resource.

6.
Front Plant Sci ; 12: 606908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995428

RESUMO

Earth's atmosphere is warming and the effects of climate change are becoming evident. A key observation is that both the average levels and the variability of temperature and precipitation are changing. Information and data from new technologies are developing in parallel to provide multidisciplinary opportunities to address and overcome the consequences of these changes in forest ecosystems. Changes in temperature and water availability impose multidimensional environmental constraints that trigger changes from the molecular to the forest stand level. These can represent a threat for the normal development of the tree from early seedling recruitment to adulthood both through direct mortality, and by increasing susceptibility to pathogens, insect attack, and fire damage. This review summarizes the strengths and shortcomings of previous work in the areas of genetic variation related to cold and drought stress in forest species with particular emphasis on loblolly pine (Pinus taeda L.), the most-planted tree species in North America. We describe and discuss the implementation of management and breeding strategies to increase resilience and adaptation, and discuss how new technologies in the areas of engineering and genomics are shaping the future of phenotype-genotype studies. Lessons learned from the study of species important in intensively-managed forest ecosystems may also prove to be of value in helping less-intensively managed forest ecosystems adapt to climate change, thereby increasing the sustainability and resilience of forestlands for the future.

7.
Ecol Evol ; 7(1): 441-465, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28070306

RESUMO

Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next-generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (Cornus florida L.) using genotyping by sequencing (GBS). This species is ecologically important to eastern US forests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental-functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases of GBS, we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental-functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluated Fst per locus while accounting for genetic differentiation between coastal subpopulations and Piedmont-Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28-39 were Arlequin-BayeScan Fst outliers. For LFMM, 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment-driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.

8.
Mol Ecol ; 26(3): 706-717, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27997049

RESUMO

Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology.


Assuntos
Conservação dos Recursos Naturais , Genômica/métodos , Melhoramento Vegetal , Árvores/genética , Mudança Climática , Congressos como Assunto , Florestas , França
9.
BMC Genet ; 17(1): 138, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27756221

RESUMO

BACKGROUND: The use of wood as an industrial raw material has led to development of plantation forestry, in which trees are planted, managed, and harvested as crops. The productivity of such plantations often exceeds that of less-intensively-managed forests, and land managers have the option of choosing specific planting stock to produce specific types of wood for industrial use. Stem forking, or division of the stem into two or more stems of roughly equal size, is a character trait important in determining the quality of the stem for production of solid wood products. This trait typically has very low individual-tree heritability, but can be more accurately assessed in clonally-replicated plantings where each genotype is represented by several individual trees. We report results from a quantitative trait mapping experiment in a clonally-replicated full-sibling family of loblolly pine (Pinus taeda L.). RESULTS: Quantitative trait loci influencing forking defects were identified in an outbred full-sibling family of loblolly pine, using single-nucleotide polymorphism markers. Genetic markers in this family segregated either in 1:2:1 (F2 intercross-like segregation) or 1:1 ratio (backcross-like segregation). An integrated linkage map combining markers with different segregation ratios was assembled for this full-sib family, and a total of 409 SNP markers were mapped on 12 linkage groups, covering 1622 cM. Two and three trait loci were identified for forking and ramicorn branch traits, respectively, using the interval mapping method. Three trait loci were detected for both traits using multiple-trait analysis. CONCLUSIONS: The detection of three loci for forking and ramicorn branching in a multiple-trait analysis could mean that there are genes with pleiotropic effects on both traits, or that separate genes affecting different traits are clustered together. The detection of genetic loci associated with variation in stem quality traits in this study supports the hypothesis that marker-assisted selection can be used to decrease the rate of stem defects in breeding populations of loblolly pine.


Assuntos
Linhagem , Pinus taeda/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Algoritmos , Cruzamento , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genótipo , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Tree Physiol ; 36(7): 883-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27126227

RESUMO

Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is selectively neutral.


Assuntos
Clorofila/fisiologia , Variação Genética , Genótipo , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Pinus sylvestris/genética , Característica Quantitativa Herdável , Animais , Clorofila A , Transporte de Elétrons , Fluorescência , Florestas , Genes de Plantas , Luz , Complexo de Proteína do Fotossistema II/fisiologia , Pinus sylvestris/fisiologia , Árvores/genética , Árvores/fisiologia
11.
Genome Biol ; 15(3): R59, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24647006

RESUMO

BACKGROUND: The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. RESULTS: We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome. CONCLUSIONS: In addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma de Planta , Pinus taeda/genética , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Haploidia
12.
G3 (Bethesda) ; 3(5): 909-16, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23585458

RESUMO

Replacement of the average numerator relationship matrix derived from the pedigree with the realized genomic relationship matrix based on DNA markers might be an attractive strategy in forest tree breeding for predictions of genetic merit. We used genotypes from 3461 single-nucleotide polymorphism loci to estimate genomic relationships for a population of 165 loblolly pine (Pinus taeda L.) individuals. Phenotypes of the 165 individuals were obtained from clonally replicated field trials and were used to estimate breeding values for growth (stem volume). Two alternative methods, based on allele frequencies or regression, were used to generate the genomic relationship matrices. The accuracies of genomic estimated breeding values based on the genomic relationship matrices and breeding values estimated based on the average numerator relationship matrix were compared. On average, the accuracy of predictions based on genomic relationships ranged between 0.37 and 0.74 depending on the validation method. We did not detect differences in the accuracy of predictions based on genomic relationship matrices estimated by two different methods. Using genomic relationship matrices allowed modeling of Mendelian segregation within full-sib families, an important advantage over a traditional genetic evaluation system based on pedigree. We conclude that estimation of genomic relationships could be a powerful tool in forest tree breeding because it accurately accounts both for genetic relationships among individuals and for nuisance effects such as location and replicate effects, and makes more accurate selection possible within full-sib crosses.


Assuntos
Cruzamento , Genoma de Planta/genética , Genômica/métodos , Pinus taeda/genética , Clonagem Molecular , Frequência do Gene/genética , Genética Populacional , Modelos Lineares , Análise de Regressão , Reprodutibilidade dos Testes , Árvores/genética
13.
New Phytol ; 183(4): 1001-1013, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19566814

RESUMO

Despite the pivotal role played by R2R3-MYB family members in the regulation of plant gene expression, little is known about post-translational regulation of these proteins. In animals, the MYB family member, c-MYB, is post-translationally modified by a mitogen-activated protein kinase (MAPK), p42(mapk). In order to test the hypothesis that R2R3-MYB proteins may be regulated by MAPK activity, interplay between a R2R3-MYB family member expressed in differentiating pine xylem (Pinus taeda MYB4, PtMYB4) and MAPK proteins expressed in the same tissue was examined. One of the MAPK proteins expressed in pine xylem, PtMAPK6, phosphorylated PtMYB4. Recombinant PtMAPK6 phosphorylated PtMYB4 on serine-236, located in the C-terminal activation domain of this transcription factor in a context that is found in other plant MYB proteins. Modification of the PtMAPK6 target serine in PtMYB4 did not appear to alter DNA binding in vitro but did alter the ability of PtMYB4 to promote transcriptional activation in yeast. PtMAPK6 activity was detected in developing xylem cells that had ceased cell division and formed secondary walls. Together, the data support a role for PtMAPK6 during early xylem development and suggest a function for this kinase in regulating gene expression through phosphorylation of PtMYB4.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas Quinases Ativadas por Mitógeno/genética , Processamento de Proteína Pós-Traducional/genética , Fatores de Transcrição/genética , Xilema/genética , Fosforilação , Pinus taeda/genética , Serina , Xilema/crescimento & desenvolvimento
14.
J Biomol Tech ; 20(2): 128-34, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19503624

RESUMO

Massively parallel pyrosequencing of DNA fragments immobilized on beads has been applied to genome survey sequencing and transcriptome analysis of a variety of eukaryotic organisms, including laboratory model species, agricultural crops and livestock, and species of interest to population biologists and ecologists. Preparation of sufficient high-quality template for sequencing has been an obstacle to sequence analysis of nucleic acids from tissues or cell types available in limited quantities. We report that the use of a biotinylated primer for polymerase chain reaction amplification allows removal of excess primer and poly(A) tract fragments from the sequencing templates, providing much higher yields of useful sequence information from pyrosequencing of amplified templates. This advance allows deep sequencing analysis of nucleic acids isolated from very small tissue samples. Massively parallel pyrosequencing is particularly useful for preliminary investigations of species that have not yet been the subject of significant genomic research, as genomic survey sequences and catalogs of expressed genes provide a means of linking the biology of less intensively studied species to that of more intensively studied model organisms. We obtained over 220 Mb of transcript DNA sequences from Abies fraseri (Pursh) Poir., a conifer species native to the southern Appalachian Mountains of eastern North America. Comparison of the resulting assembled putative transcripts with similar data obtained by other sequencing methods from other conifers demonstrates the utility of the improved sequencing template preparation.


Assuntos
Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Abies/genética , Sequência de Bases , Biotinilação , Primers do DNA/química , DNA Complementar/química , Eucalyptus/química , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Pinus/química , Pinus taeda/química , Folhas de Planta/química , Proteínas de Plantas/química , Caules de Planta/química , RNA/isolamento & purificação , Padrões de Referência
15.
J Plant Res ; 119(6): 581-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16952031

RESUMO

We previously showed that eight laccase genes (Lac 1-Lac 8) are preferentially expressed in differentiating xylem and are associated with lignification in loblolly pine (Pinus taeda) [Sato et al. (2001) J Plant Res 114:147-155]. In this study we generated transgenic tobacco suspension cell cultures that express the pine Lac 1 and Lac 2 proteins, and characterized the abilities of these proteins to oxidize monolignols. Lac 1 and Lac 2 enzymatic activities were detected only in the cell walls of transgenic tobacco cells, and could be extracted with high salt. The optimum pH for laccase activity with coniferyl alcohol as substrate was 5.0 for Lac 1 and between 5.0 and 6.0 for Lac 2. The activities of Lac 1 and Lac 2 increased as the concentration of CuSO(4) in the reaction mixtures increased in the range from 1 to 100 microM. Both enzymes were able to oxidize coniferyl alcohol and to produce dimers of coniferyl alcohol. These results are consistent with the hypothesis that Lac 1 and Lac 2 are involved in lignification in differentiating xylem of loblolly pine.


Assuntos
Lacase/química , Lacase/genética , Pinus taeda/enzimologia , Linhagem Celular Transformada , Clonagem Molecular , Sulfato de Cobre/metabolismo , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/fisiologia , Lacase/fisiologia , Lignina/metabolismo , Fenóis/metabolismo , Fenilpropionatos/metabolismo , Plantas Geneticamente Modificadas , Nicotiana , Xilema/enzimologia
16.
Genetics ; 166(3): 1405-18, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15082559

RESUMO

The genetic architecture of hybrid fitness characters can provide valuable insights into the nature and evolution of postzygotic reproductive barriers in diverged species. We determined the genome-wide distribution of barriers to introgression in an F(1) hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.) and E. globulus (Labill.). Two interspecific backcross families (N = 186) were used to construct comparative, single-tree, genetic linkage maps of an F(1) hybrid individual and two backcross parents. A total of 1354 testcross AFLP marker loci were evaluated in the three parental maps and a substantial proportion (27.7% average) exhibited transmission ratio distortion (alpha = 0.05). The distorted markers were located in distinct regions of the parental maps and marker alleles within each region were all biased toward either of the two parental species. We used a Bayesian approach to estimate the position and effect of transmission ratio distorting loci (TRDLs) in the distorted regions of each parental linkage map. The relative viability of TRDL alleles ranged from 0.20 to 0.72. Contrary to expectation, heterospecific (donor) alleles of TRDLs were favored as often as recurrent alleles in both backcrosses, suggesting that positive and negative heterospecific interactions affect introgression rates in this wide interspecific pedigree.


Assuntos
Cruzamentos Genéticos , Eucalyptus/genética , Genoma de Planta , Alelos , Teorema de Bayes , Distribuição de Qui-Quadrado , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Marcadores Genéticos , Hibridização Genética , Cadeias de Markov , Método de Monte Carlo , Linhagem , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie
17.
Planta ; 218(6): 916-27, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14722770

RESUMO

We have isolated a gene from loblolly pine, 5NG4, that is highly and specifically induced by auxin in juvenile loblolly pine shoots prior to adventitious root formation, but substantially down-regulated in physiologically mature shoots that are adventitious rooting incompetent. 5NG4 was highly auxin-induced in roots, stems and hypocotyls, organs that can form either lateral or adventitious roots following an auxin treatment, but was not induced to the same level in needles and cotyledons, organs that do not form roots. The deduced amino acid sequence shows homology to the MtN21 nodulin gene from Medicago truncatula. The expression pattern of 5NG4 and its homology to a protein from Medicago involved in a root-related process suggest a possible role for this gene in adventitious root formation. Homology searches also identified similar proteins in Arabidopsis thaliana and Oryza sativa. High conservation across these evolutionarily distant species suggests essential functions in plant growth and development. A 38-member family of genes homologous to 5NG4 was identified in the A. thaliana genome. The physiological significance of this redundancy is most likely associated with functional divergence and/or expression specificity of the different family members. The exact biochemical function of the gene is still unknown, but sequence and structure predictions and 5NG4::GFP fusion protein localizations indicate it is a transmembrane protein with a possible transport function.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Pinus taeda/genética , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Regulação para Baixo , Dados de Sequência Molecular , Filogenia , Pinus taeda/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Plant J ; 36(6): 743-54, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14675440

RESUMO

A member of the R2R3-MYB family of transcription factors was cloned from a cDNA library constructed from RNA isolated from differentiating pine xylem. This MYB, Pinus taeda MYB4 (PtMYB4), is expressed in cells undergoing lignification, as revealed by in situ RT-PCR. Electrophoretic mobility shift assays (EMSAs) showed that recombinant PtMYB4 protein is able to bind to DNA motifs known as AC elements. AC elements are ubiquitous in the promoters of genes encoding lignin biosynthetic enzymes. Transcriptional activation assays using yeast showed that PtMYB4 could activate transcription in an AC-element-dependent fashion. Overexpression of PtMYB4 in transgenic tobacco plants altered the accumulation of transcripts corresponding to genes encoding lignin biosynthetic enzymes. Lignin deposition increased in transgenic tobacco plants that overexpressed PtMYB4, and extended to cell types that do not normally lignify. Taken together, these findings are consistent with the hypothesis that PtMYB4 is sufficient to induce lignification, and that it may play this role during wood formation in pine.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Genes myb/genética , Pinus/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA Complementar/genética , Proteínas de Ligação a DNA/química , Biblioteca Gênica , Lignina/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Nicotiana/metabolismo , Fatores de Transcrição/química
19.
Plant Mol Biol ; 53(4): 597-608, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15010621

RESUMO

A cDNA encoding a member of the R2R3-MYB family of transcription factors was cloned from a library constructed from differentiating Pinus taeda (loblolly pine) xylem RNA. This MYB family member, Pinus taeda MYB1 (PtMYB1), was most abundantly expressed in differentiating xylem, as assessed by both ribonuclease protection assays, and by northern blot analysis with poly(A)-enriched RNA. Similar to other plant R2R3-MYB family members, recombinant Pt MYB1 protein was able to bind to AC elements in electrophoretic mobility shift assays (EMSAs). AC elements are DNA motifs rich in adenosine and cytosine that have been implicated in the xylem-localised regulation of genes encoding lignin biosynthetic enzymes. Pt MYB1 not only bound to AC elements, but was also able to induce AC-element-dependent shifts in the electrophoretic mobility of a plant promoter that contains three AC elements, the minimal PHENYLALANINE AMMONIA-LYASE 2 (PAL2) promoter from Phaseolus vulgaris. Transcriptional activation assays conducted using yeast showed that Pt MYB1 also activated transcription, and that it did so in an AC-element-dependent fashion. Pt MYB1 also activated transcription from the minimal PAL2 promoter in plant cells in an AC-element-dependent fashion, as revealed by transient transcriptional activation assays with microprojectile-bombarded tobacco NT-1 cells. Taken together, these finding are consistent with the hypothesis that Pt MYB1 may regulate transcription from cis -acting AC elements in pine xylem.


Assuntos
Pinus/genética , Proteínas de Plantas/genética , Estruturas Vegetais/genética , Proteínas Proto-Oncogênicas c-myb/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Clonagem Molecular , Citidina Trifosfato/genética , Citidina Trifosfato/metabolismo , DNA Complementar/química , DNA Complementar/genética , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transcrição Gênica/genética
20.
Comp Funct Genomics ; 3(3): 226-43, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-18628855

RESUMO

Conception, design, and implementation of cDNA microarray experiments present a variety of bioinformatics challenges for biologists and computational scientists. The multiple stages of data acquisition and analysis have motivated the design of Expresso, a system for microarray experiment management. Salient aspects of Expresso include support for clone replication and randomized placement; automatic gridding, extraction of expression data from each spot, and quality monitoring; flexible methods of combining data from individual spots into information about clones and functional categories; and the use of inductive logic programming for higher-level data analysis and mining. The development of Expresso is occurring in parallel with several generations of microarray experiments aimed at elucidating genomic responses to drought stress in loblolly pine seedlings. The current experimental design incorporates 384 pine cDNAs replicated and randomly placed in two specific microarray layouts. We describe the design of Expresso as well as results of analysis with Expresso that suggest the importance of molecular chaperones and membrane transport proteins in mechanisms conferring successful adaptation to long-term drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA