Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neural Dev ; 6: 20, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21539742

RESUMO

BACKGROUND: The concept of an equivalence group, a cluster of cells with equal potential to adopt the same specific fate, has served as a useful paradigm to understand neural cell type specification. In the Drosophila eye, a set of five cells, called the 'R7 equivalence group', generates a single photoreceptor neuron and four lens-secreting epithelial cells. This choice between neuronal versus non-neuronal cell fates rests on differential requirements for, and cross-talk between, Notch/Delta- and Ras/mitogen-activated protein kinase (MAPK)-dependent signaling pathways. However, many questions remain unanswered related to how downstream events of these two signaling pathways mediate distinct cell fate decisions. RESULTS: Here, we demonstrate that two direct downstream targets of Ras and Notch signaling, the transcription factors Prospero and dPax2, are essential regulators of neuronal versus non-neuronal cell fate decisions in the R7 equivalence group. Prospero controls high activated MAPK levels required for neuronal fate, whereas dPax2 represses Delta expression to prevent neuronal fate. Importantly, activity from both factors is required for proper cell fate decisions to occur. CONCLUSIONS: These data demonstrate that Ras and Notch signaling are integrated during cell fate decisions within the R7 equivalence group through the combinatorial and opposing activities of Pros and dPax2. Our study provides one of the first examples of how the differential expression and synergistic roles of two independent transcription factors determine cell fate within an equivalence group. Since the integration of Ras and Notch signaling is associated with many developmental and cancer models, these findings should provide new insights into how cell specificity is achieved by ubiquitously used signaling pathways in diverse biological contexts.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/fisiologia , Fator de Transcrição PAX2/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Proteínas ras/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Drosophila , Proteínas de Drosophila/genética , Olho/citologia , Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/genética , Neurônios/classificação , Proteínas Nucleares/genética , Fator de Transcrição PAX2/genética , Células Fotorreceptoras , Pupa , Receptores Notch/genética , Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Fatores de Transcrição/genética , Proteínas ras/genética
2.
J Biol Chem ; 279(47): 49010-8, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15347652

RESUMO

Vertebrate rhodopsin promoters exhibit striking sequence identities proximal to the initiation site, suggesting that conserved transcription factors regulate rhodopsin expression in these animals. We identify and characterize two transcriptional activators of the Xenopus rhodopsin gene: homologs of the mammalian Crx and Nrl transcription factors, XOtx5 and XL-Nrl (originally named XL-maf), respectively. XOtx5 stimulated transcription approximately 10-fold in human 293 cells co-transfected with a plasmid containing the rhodopsin promoter (-508 to +41) upstream of luciferase, similar to the approximately 6-fold stimulation with human Crx. XL-Nrl stimulated transcription approximately 27-fold in mammalian 293 cells co-transfected with the rhodopsin luciferase reporter, slightly more than the approximately 17-fold stimulation with Nrl. Together, the Xenopus transcription factors synergistically activated the rhodopsin promoter (approximately 140-fold), as well as in combination with mammalian homologs. Deletion of the Nrl-response element, TGCTGA, eliminated the synergistic activation by both mammalian and Xenopus transcription factors. Deletion of the conserved ATTA sequences (Ret-1 or BAT-1), binding sites for Crx, did not significantly decrease activation by Crx/XOtx5. However, there was increased activation by Nrl/XL-Nrl and an increased synergy when the Ret-1 site was disrupted. These results illustrate conservation of mechanisms of retinal gene expression among vertebrates. In transgenic tadpoles, XOtx5 and XL-Nrl directed premature and ectopic expression from the Xenopus rhodopsin promoter-GFP transgene. Furthermore, activation of the endogenous rhodopsin gene was also observed in some animals, showing that XOtx5 and XL-Nrl can activate the promoter in native chromatin environment.


Assuntos
Rodopsina/genética , Rodopsina/fisiologia , Ativação Transcricional , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Sequência Conservada , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Deleção de Genes , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hibridização In Situ , Luciferases/metabolismo , Filogenia , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Opsinas de Bastonetes/genética , Transfecção , Transgenes , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA