Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 28(11): 2289-97, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19580335

RESUMO

Estuarine sediment microcosms were treated with combinations of diesel, copper (at two levels), and a mixture of heavy metals (mercury, cadmium, lead, and chromium; at two levels) mimicking the contaminant loadings found in harbor sediments. The effects on the microbial community were monitored by polar lipid fatty acid analysis. Diesel addition increased microbial biomass, caused shifts in some fatty acid structural groups, and decreased starvation biomarkers. Incorporation of diesel hydrocarbons into lipids was expressed as an increase in the proportion of odd-carbon-number fatty acids. No treatment with the metals mixture (mercury, cadmium, lead, and chromium) alone significantly changed any parameter derived from the polar lipid fatty acids, but the increase in microbial biomass from diesel addition was higher with the metals mixture, possibly because of indirect effects caused by reductions in grazing resulting from metal-induced toxicity to bacteriovorous nematodes. Copper also modified the effects of diesel addition, preventing biomass increase but not diesel degradation, suggesting that some of the energy gained from diesel oxidation was expended combating copper toxicity. In the present study, observations indicate that metals in general, and copper in particular, can modify the response of sedimentary microorganisms to petroleum-hydrocarbon contaminants.


Assuntos
Biomassa , Cobre/metabolismo , Gasolina , Sedimentos Geológicos , Microbiologia do Solo , Cádmio/metabolismo , Cádmio/toxicidade , Cromo/metabolismo , Cromo/toxicidade , Cobre/toxicidade , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Hidrocarbonetos/toxicidade , Chumbo/metabolismo , Chumbo/toxicidade , Mercúrio/metabolismo , Mercúrio/toxicidade
2.
Appl Microbiol Biotechnol ; 83(3): 555-65, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19333599

RESUMO

A lithoautotrophic, Fe(II) oxidizing, nitrate-reducing bacterium, strain 2002 (ATCC BAA-1479; =DSM 18807), was isolated as part of a study on nitrate-dependent Fe(II) oxidation in freshwater lake sediments. Here we provide an in-depth phenotypic and phylogenetic description of the isolate. Strain 2002 is a gram-negative, non-spore forming, motile, rod-shaped bacterium which tested positive for oxidase, catalase, and urease. Analysis of the complete 16S rRNA gene sequence placed strain 2002 in a clade within the family Neisseriaceae in the order Nessieriales of the Betaproteobacteria 99.3% similar to Pseudogulbenkiania subflava. Similar to P. sublfava, predominant whole cell fatty acids were identified as 16:17c, 42.4%, and 16:0, 34.1%. Whole cell difference spectra of the Fe(II) reduced minus nitrate oxidized cyctochrome content revealed a possible role of c-type cytochromes in nitrate-dependent Fe(II) oxidation. Strain 2002 was unable to oxidize aqueous or solid-phase Mn(II) with nitrate as the electron acceptor. In addition to lithotrophic growth with Fe(II), strain 2002 could alternatively grow heterotrophically with long-chain fatty acids, simple organic acids, carbohydrates, yeast extract, or casamino acids. Nitrate, nitrite, nitrous oxide, and oxygen also served as terminal electron acceptors with acetate as the electron donor.


Assuntos
Betaproteobacteria/classificação , Betaproteobacteria/metabolismo , Água Doce/microbiologia , Metais/metabolismo , Processos Autotróficos , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico , Ácidos Graxos/metabolismo , Sedimentos Geológicos/microbiologia , Dados de Sequência Molecular , Nitratos/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
3.
Environ Sci Technol ; 43(6): 1952-61, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368198

RESUMO

Metal and hydrogen ion acidity and extreme nitrate concentrations at Department of Energy legacywaste sites pose challenges for successful in situ U and Tc bioimmobilization. In this study, we investigated a potential in situ biobarrier configuration designed to neutralize pH and remove nitrate and radionuclides from nitric acid-, U-, and Tc-contaminated groundwater for over 21 months. Ethanol additions to groundwater flowing through native sediment and crushed limestone effectively increased pH (from 4.7 to 6.9), promoted removal of 116 mM nitrate, increased sediment biomass, and immobilized 94% of total U. Increased groundwater pH and significant U removal was also observed in a control column that received no added ethanol. Sequential extraction and XANES analyses showed U in this sediment to be solid-associated U(VI), and EXAFS analysis results were consistent with uranyl orthophosphate (UO2)3(PO4)2.4H2O(s), which may control U solubility in this system. Ratios of respiratory ubiquinones to menaquinones and copies of dissimilatory nitrite reductase genes, nirS and nirK, were at least 1 order of magnitude greater in the ethanol-stimulated system compared to the control, indicating that ethanol addition promoted growth of a largely denitrifying microbial community. Sediment 16S rRNA gene clone libraries showed that Betaproteobacteria were dominant (89%) near the source of influent acidic groundwater, whereas members of Gamma- and Alphaproteobacteria and Bacteroidetes increased along the flow path as pH increased and nitrate concentrations decreased, indicating spatial shifts in community composition as a function of pH and nitrate concentrations. Results of this study support the utility of biobarriers for treating acidic radionuclide- and nitrate-contaminated groundwater.


Assuntos
Modelos Químicos , Ácido Nítrico/química , Tecnécio/química , Urânio/química , Abastecimento de Água/análise , Sedimentos Geológicos , Modelos Moleculares , Estrutura Molecular , Microbiologia da Água , Poluentes Químicos da Água/química , Poluentes Radioativos da Água/química
4.
Lipids ; 43(9): 843-51, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18612672

RESUMO

A previously unreported series of di- and tri-methylated fatty acids, as well as saturated and monounsaturated diacids were identified in polar lipids isolated from environmental subsurface sediment samples. Mechanisms are proposed for their formation, but their origin and role in cell membranes remains unknown.


Assuntos
Ácidos Graxos/análise , Microbiologia do Solo , Monitoramento Ambiental , Espectrometria de Massas , Metilação
5.
Clin Lung Cancer ; 9(1): 16-23, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18282353

RESUMO

Lung cancer remains one of the leading causes of death throughout the world. Although surgery is the gold standard treatment for lung cancer, the majority of patients are not resectable at the time of diagnosis. Even among patients who are potentially resectable, many are treated nonoperatively because of inadequate pulmonary reserve or advanced comorbidities. Despite aggressive multiple-drug regimens and the addition of radiation treatment, survival remains poor without surgery, and recurrence is the rule regardless of the initial treatment. Radiofrequency ablation can be performed via a percutaneous approach under conscious sedation, and side effects are generally mild and self limited, primarily consisting of pneumothorax. Radiofrequency ablation can be applied to primary pulmonary malignancies and metastatic lesions and is reported to achieve excellent local control in limited clinical series. Human and animal studies supporting the use of radiofrequency ablation for pulmonary malignancy are reviewed, and the current application of radiofrequency ablation and its limitations are described herein.


Assuntos
Ablação por Cateter/métodos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/cirurgia , Animais , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
6.
Appl Environ Microbiol ; 74(2): 495-502, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17993550

RESUMO

Bacteriophages are very abundant in the biosphere, and viral infection is believed to affect the activity and genetic diversity of bacterial communities in aquatic environments. Lysogenic conversion, for example, can improve host fitness and lead to phage-mediated horizontal gene transfer. However, little is known about lysogeny and transduction in the soil environment. In this study we employed atrazine-impregnated Bio-Sep beads (a cell immobilization matrix) to sample active microbiota from soils with prior pesticide exposure history. Once recovered from soil, the bead communities were induced with mitomycin C (MC), and viral and bacterial abundances were determined to evaluate the incidence of inducible prophage in soil bacteria. The inducible fraction calculated within bead communities was high (ca. 85%) relative to other studies in aquatic and sedimentary environments. Moreover, the bacterial genes encoding 16S rRNA and trzN, a chlorohydrolase gene responsible for dehalogenation of atrazine, were detected by PCR in the viral DNA fraction purified from MC-induced bead communities. A diverse collection of actinobacterial 16S rRNA gene sequences occurred within the viral DNA fraction of induced, water-equilibrated beads. Similar results were observed in induced atrazine-equilibrated beads, where 77% of the cloned sequences were derived from actinobacterial lineages. Heterogeneous 16S rRNA gene sequences consisting of fragments from two different taxa were detected in the clone libraries. The results suggest that lysogeny is a prevalent reproductive strategy among soil bacteriophages and that the potential for horizontal gene transfer via transduction is significant in soil microbial communities.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , DNA Viral/genética , Lisogenia/genética , RNA Ribossômico 16S/genética , Actinomycetales/genética , Atrazina/farmacologia , Bactérias/ultraestrutura , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Transferência Genética Horizontal , Microscopia Eletrônica de Transmissão , Mitomicina/farmacologia , Reação em Cadeia da Polimerase , Poliestirenos , Microbiologia do Solo
7.
Appl Environ Microbiol ; 73(18): 5885-96, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17630297

RESUMO

In a previous column study, we investigated the long-term impact of ethanol additions on U and Tc mobility in groundwater (M. M. Michalsen et al., Environ. Sci. Technol. 40:7048-7053, 2006). Ethanol additions stimulated iron- and sulfate-reducing conditions and significantly enhanced U and Tc removal from groundwater compared to an identical column that received no ethanol additions (control). Here we present the results of a combined signature lipid and nucleic acid-based microbial community characterization in sediments collected from along the ethanol-stimulated and control column flow paths. Phospholipid fatty acid analysis showed both an increase in microbial biomass (approximately 2 orders of magnitude) and decreased ratios of cyclopropane to monoenoic precursor fatty acids in the stimulated column compared to the control, which is consistent with electron donor limitation in the control. Spatial shifts in microbial community composition were identified by PCR-denaturing gradient gel electrophoresis analysis as well as by quantitative PCR, which showed that Geobacteraceae increased significantly near the stimulated-column outlet, where soluble electron acceptors were largely depleted. Clone libraries of 16S rRNA genes from selected flow path locations in the stimulated column showed that Proteobacteria were dominant near the inlet (46 to 52%), while members of candidate division OP11 were dominant near the outlet (67%). Redundancy analysis revealed a highly significant difference (P = 0.0003) between microbial community compositions within stimulated and control sediments, with geochemical variables explaining 68% of the variance in community composition on the first two canonical axes.


Assuntos
Bactérias/genética , Sedimentos Geológicos/microbiologia , Tecnécio/metabolismo , Urânio/metabolismo , Bactérias/classificação , DNA Bacteriano/análise , DNA Ribossômico/análise , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
8.
Appl Environ Microbiol ; 73(15): 4892-904, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17557842

RESUMO

Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.


Assuntos
Betaproteobacteria , Água Doce/microbiologia , Nitratos , Urânio , Poluição da Água , Abastecimento de Água , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Meios de Cultura , Etanol/metabolismo , Água Doce/química , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitratos/análise , Nitratos/metabolismo , Filogenia , Análise de Sequência de DNA , Urânio/análise
9.
J Contam Hydrol ; 93(1-4): 216-35, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17442451

RESUMO

During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to identify the dominant transport and biological processes controlling uranium mobility during biostimulation, and determine field-scale parameters for these modeled processes. The coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes based on the 2002 field experiment, that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of the bioavailable Fe(III) mineral threshold for the onset of sulfate reduction, and rates for the Fe(III), U(VI), and sulfate terminal electron accepting processes.


Assuntos
Urânio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Acetatos/química , Biodegradação Ambiental , Brometos/química , Calibragem , Elétrons , Geologia/métodos , Ferro/química , Modelos Químicos , Modelos Estatísticos , Sulfatos/química , Fatores de Tempo , Água/química
10.
Microb Ecol ; 54(3): 523-31, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17347892

RESUMO

Microbial mats are highly productive microbial systems and a source of not-yet characterized microorganisms and metabolic strategies. In this article, we introduced a lipid biomarker/microbial isolation approach to detect short-term variations of microbial diversity, physiological and redox status, and also characterize lipid biomarkers from specific microbial groups that can be further monitored. Phospholipid fractions (PLFA) were examined for plasmalogens, indicative of certain anaerobes. The glycolipid fraction was processed for polyhydroxyalkanoates (PHA) and the neutral lipid fraction was used to evaluate respiratory quinone content. Data demonstrate an increase in the metabolic stress, unbalanced growth, proportion of anaerobic bacteria and respiratory rate after the maximal photosynthetic activity. Higher accumulation of polyhydroxyalkanoates at the same sampling point also suggested a situation of carbon storage by heterotrophs closely related to photosynthetic microorganisms. Besides, the characterization of lipid biomarkers (plasmalogens, sphingolipids) from specific microbial groups provided clues about the dynamics and diversity of less-characterized mat members. In this case, lipid analyses were complemented by the isolation and characterization of anaerobic spore formers and sulfate reducers to obtain insight into their affiliation and lipid composition. The results revealed that temporal shifts in lipid biomarkers are indicative of an intense change in the physiology, redox condition, and community composition along the diel cycle, and support the hypothesis that interactions between heterotrophs and primary producers play an important role in the carbon flow in microbial mats.


Assuntos
Bactérias/metabolismo , Biodiversidade , Biomarcadores/metabolismo , Microbiologia da Água , Bactérias/crescimento & desenvolvimento , Bactérias/ultraestrutura , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/metabolismo , Bactérias Anaeróbias/ultraestrutura , Fenômenos Fisiológicos Bacterianos , Biomassa , Ecossistema , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/ultraestrutura , Metabolismo dos Lipídeos , Microscopia Eletrônica de Transmissão , Oxirredução , Consumo de Oxigênio , Plasmalogênios/metabolismo , Espanha , Esfingolipídeos/metabolismo , Fatores de Tempo
11.
Arch Microbiol ; 188(2): 137-46, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17361455

RESUMO

Microbial mats are prokaryotic communities that provide model systems to analyze microbial diversity and ecophysiological interactions. Community diversity of microbial mat samples was assessed at 8:00 a.m. and 3:00 p.m. in a combined analysis consisting of 16S rRNA-denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) profiles. The divergence index determined from PLFA and DGGE data showed that depth-related differences have a greater influence on diversity than temporal variations. Shannon and Simpson indices yielded similar values in all samples, which suggested the stable maintenance of a structurally diverse microbial community. The increased diversity observed at 3:00 p.m. between 2.5 and 4 mm can be explained mainly by diversification of anaerobic microorganisms, especially sulfate-reducing bacteria. In the afternoon sampling, the diversity index reflected a higher diversity between 4 and 5.5 mm depth, which suggested an increase in the diversity of strict anaerobes and fermenters. The results are consistent with the conclusion that hypersaline microbial mats are characterized by high degree of diversity that shifts in response to the photobiological adaptations and metabolic status of the microbial community.


Assuntos
Biodiversidade , Ecossistema , Cloreto de Sódio/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Eletroforese em Gel de Poliacrilamida , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética
12.
J Bacteriol ; 188(24): 8543-50, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028273

RESUMO

Short-chain alcohol dehydrogenases (SCADHs) synthesize a variety of intercellular signals and other chemically diverse products. It is difficult to predict the substrate of a SCADH on the basis of amino acid sequence homology, as the substrates are not known for most SCADHs. In Myxococcus xanthus, the SCADH CsgA is responsible for C signaling during fruiting body development, although the mechanism is unclear. Overexpression of the SCADH SocA compensates for the lack of CsgA and restores development and C signaling in csgA mutants. The potential of SocA in generating the C signal enzymatically was explored by developing a dehydrogenase assay-based screen to purify the SocA substrate(s). A SocA substrate was extracted from M. xanthus cells with acidified ethyl acetate and sequentially purified by solid-phase extraction on silica gel and by reverse-phase high-performance liquid chromatography. The fraction with the highest SocA dehydrogenase activity contained the lysophospholipid 1-acyl 2-hydroxy-sn-glycerophosphoethanolamine (lyso-PE) as indicated by the fragment ions and a phosphatidylethanolamine-specific neutral loss scan following liquid chromatography coupled to mass spectrometry. The abundant lysophospholipid with the mass m/z 450 (molecular ion [M-H]-) had a monounsaturated acyl chain with 16 carbons. SocA oxidizes lyso-PE containing either saturated or unsaturated fatty acids but exhibits poor activity on l-alpha-glycerophosphorylethanolamine, suggesting that an acyl chain is important for activity. Of the five different head groups, only ethanolamine showed appreciable activity. The apparent Km and Vmax for lyso-PE 18:1 were 116 microM and 875 micromol min(-1) mg(-1), respectively. The catalytic efficiency (k(cat)/Km) was 1 x 10(8) M(-1) s(-1). The proposed product, 1-acyloxy-3-(2-aminoethylphosphatyl) acetone was unstable, and the fragmented products were unable to rescue csgA mutant development. The active fraction from thin-layer chromatography also contained an unidentified SocA substrate that had morphogenic properties.


Assuntos
Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/metabolismo , Lisofosfolipídeos/metabolismo , Myxococcus xanthus/enzimologia , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Álcool Desidrogenase/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Lisofosfolipídeos/isolamento & purificação , Myxococcus xanthus/genética , Myxococcus xanthus/crescimento & desenvolvimento , Especificidade por Substrato
13.
Environ Microbiol ; 8(11): 1935-49, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17014493

RESUMO

Organisms that colonize solid surfaces, like Myxococcus xanthus, use novel signalling systems to organize multicellular behaviour. Phosphatidylethanolamine (PE) containing the fatty acid 16:1omega5 (Delta11) elicits a chemotactic response. The phenomenon was examined by observing the effects of PE species with varying fatty acid pairings. Wild-type M. xanthus contains 17 different PE species under vegetative conditions and 19 at the midpoint of development; 13 of the 17 have an unsaturated fatty acid at the sn-1 position, a novelty among Proteobacteria. Myxococcus xanthus has two glycerol-3-phosphate acyltransferase (PlsB) homologues which add the sn-1 fatty acid. Each produces PE with 16:1 at the sn-1 position and supports growth and fruiting body development. Deletion of plsB1 (MXAN3288) results in more dramatic changes in PE species distribution than deletion of plsB2 (MXAN1675). PlsB2 has a putative N-terminal eukaryotic fatty acid reductase domain and may support both ether lipid synthesis and PE synthesis. Disruption of a single sn-2 acyltransferase homologue (PlsC, of which M. xanthus contains five) results in minor changes in membrane PE. Derivatization of purified PE extracts with dimethyldisulfide was used to determine the position of the double bonds in unsaturated fatty acids. The results suggest that Delta5 and Delta11 desaturases may create the double bonds after synthesis of the fatty acid. Phosphatidylethanolamine enriched for 16:1 at the sn-1 position stimulates chemotaxis more strongly than PE with 16:1 enriched at the sn-2 position. It appears that the deployment of a rare fatty acid (16:1omega5) at an unusual position (sn-1) has facilitated the evolution of a novel cell signal.


Assuntos
Quimiotaxia/fisiologia , Ácidos Graxos/fisiologia , Myxococcus xanthus/química , Myxococcus xanthus/fisiologia , Fosfatidiletanolaminas/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Acetiltransferases/química , Acetiltransferases/genética , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Sequência de Aminoácidos , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Dados de Sequência Molecular , Myxococcus xanthus/genética , Fosfatidiletanolaminas/química , Alinhamento de Sequência
14.
J Environ Sci Health B ; 41(6): 923-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16893780

RESUMO

Agricultural pharmaceuticals are a major environmental concern because of their hazardous effects on human and wildlife. This study analyzed phospholipid ester-linked fatty acids (PLFAs) and quinones to investigate the effects of a steroid (17beta-estradiol) and agricultural antibiotics (chlortetracycline and tylosin) on soil microbes in the laboratory. Two different types of soil were used: Sequatchie loam (0.8% organic matter) and LaDelle silt loam (9.2% organic matter). The soils were spiked with 17beta-estradiol and antibiotics, alone or in combination. In Sequatchie loam, 17beta-estradiol significantly increased the microbial biomass, especially the biomarkers for beta proteobacteria (16:1omega7c, 18:1omega7c, Cy17:0, and UQ-8). The coexistence of antibiotics decreased the stimulatory effect of 17beta-estradiol on the microbial community. In LaDelle silt loam, there were no significant differences in total microbial biomass and their microbial community structure among the treatments. Overall, 17beta-estradiol changed the microbial community of soil and the presence of antibiotics nullified the effect of 17beta-estradiol. However, the effects of 17beta-estradiol and antibiotics on soil microbes were sensitive to the soil properties, as seen in the LaDelle silt loam.


Assuntos
Antibacterianos/farmacologia , Bactérias , Biodegradação Ambiental/efeitos dos fármacos , Estradiol/farmacologia , Microbiologia do Solo , Poluentes do Solo/farmacologia , Agricultura , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Clortetraciclina/farmacologia , Solo , Tilosina/farmacologia
15.
Microb Ecol ; 51(2): 177-88, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16435170

RESUMO

The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.


Assuntos
Bactérias/classificação , Biomarcadores/análise , Ecossistema , Redes Neurais de Computação , Urânio/análise , Microbiologia da Água , Contaminação Radioativa da Água/análise , Bactérias/química , Bactérias/metabolismo , Biodegradação Ambiental , Ácidos Graxos/análise , Resíduos Industriais/análise , Metais/metabolismo , New Mexico , Nitratos , Fosfolipídeos/análise , Sensibilidade e Especificidade , Especificidade da Espécie , Sulfatos , Trítio/análise , Poluição Química da Água/análise
16.
Appl Environ Microbiol ; 71(12): 8426-33, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332831

RESUMO

Dehalococcoides species have a highly restricted lifestyle and are only known to derive energy from reductive dehalogenation reactions. The lipid fraction of two Dehalococcoides isolates, strains BAV1 and FL2, and a tetrachloroethene-to-ethene-dechlorinating Dehalococcoides-containing consortium were analyzed for neutral lipids and phospholipid fatty acids. Unusual phospholipid modifications, including the replacement of unsaturated fatty acids with furan fatty acids, were detected in both Dehalococcoides isolates and the mixed culture. The following three furan fatty acids are reported as present in bacterial phospholipids for the first time: 9-(5-pentyl-2-furyl)-nonanoate (Fu18:2omega6), 9-(5-butyl-2-furyl)-nonanoate (Fu17:2omega5), and 8-(5-pentyl-2-furyl)-octanoate (Fu17:2omega6). The neutral lipids of the Dehalococcoides cultures contained unusually large amounts of benzoquinones (i.e., ubiquinones [UQ]), which is unusual for anaerobes. In particular, the UQ-8 content of Dehalococcoides was 5- to 20-fold greater than that generated in aerobically grown Escherichia coli cultures relative to the phospholipid fatty acid content. Naphthoquinone isoprenologues (MK), which are often found in anaerobically grown bacteria and archaea, were also detected. Dehalococcoides shows a difference in isoprenologue pattern between UQ-8 and MK-5 that is atypical of other bacteria capable of producing both quinone types. The difference in UQ-8 and MK-5 isoprenologue patterns strongly suggests a special function for UQ in Dehalococcoides, and Dehalococcoides may utilize structural modifications in its lipid armamentarium to protect against free radicals that are generated in the process of reductive dechlorination.


Assuntos
Chloroflexi/fisiologia , Ácidos Graxos/metabolismo , Radicais Livres/toxicidade , Ácidos Linoleicos/metabolismo , Fosfolipídeos/metabolismo , Ubiquinona/metabolismo , Biofilmes/classificação , Biomassa , Chloroflexi/efeitos dos fármacos , Chloroflexi/crescimento & desenvolvimento , Chloroflexi/isolamento & purificação , Meios de Cultura , Ácidos Graxos/classificação , Espectrometria de Massas , Quinonas/metabolismo
17.
Environ Sci Technol ; 39(23): 9039-48, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16382923

RESUMO

A field-scale acetate amendment experiment was performed in a contaminated aquifer at Old Rifle, CO to stimulate in situ microbial reduction of U(VI) in groundwater. To evaluate the microorganisms responsible for microbial uranium reduction during the experiment, 13C-labeled acetate was introduced into well bores via bio-traps containing porous activated carbon beads (Bio-Sep). Incorporation of the 13C from labeled acetate into cellular DNA and phospholipid fatty acid (PLFA) biomarkers was analyzed in parallel with geochemical parameters. An enrichment of active sigma-proteobacteria was demonstrated in downgradient monitoring wells: Geobacter dominated in wells closer to the acetate injection gallery, while various sulfate reducers were prominent in different downgradient wells. These results were consistent with the geochemical evidence of Fe(III), U(VI), and SO(4)2- reduction. PLFA profiling of bio-traps suspended in the monitoring wells also showed the incorporation of 13C into bacterial cellular lipids. Community composition of downgradient monitoring wells based on quinone and PLFA profiling was in general agreement with the 13C-DNA result. The direct application of 13C label to biosystems, coupled with DNA and PLFA analysis,


Assuntos
Acetatos/metabolismo , Isótopos de Carbono/metabolismo , Geobacter/metabolismo , Proteobactérias/metabolismo , Urânio/metabolismo , Biodegradação Ambiental , Eletroforese em Gel de Poliacrilamida , Filogenia , Reação em Cadeia da Polimerase
18.
Appl Environ Microbiol ; 71(10): 6175-84, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16204536

RESUMO

The microeukaryotic community in Zodletone Spring, a predominantly anaerobic sulfide and sulfur-rich spring, was examined using an 18S rRNA gene cloning and sequencing approach. The majority of the 288 clones sequenced from three different locations at Zodletone Spring belonged to the Stramenopiles, Alveolata, and Fungi, with members of the phylum Cercozoa, order Diplomonadida, and family Jakobidae representing a minor fraction of the clone library. No sequences suggesting the presence of novel kingdom level diversity were detected in any of the three libraries. A large fraction of stramenopile clones encountered were monophyletic with either members of the genus Cafeteria (order Bicosoecida) or members of the order Labyrinthulida (slime nets), both of which have so far been encountered mainly in marine habitats. The majority of the observed fungal clone sequences belonged to the ascomycetous yeasts (order Saccharomycetales), were closely related to yeast genera within the Hymenobasidiomycetes (phylum Basidiomycetes), or formed a novel fungal lineage with several previously published or database-deposited clones. To determine whether the unexpected abundance of fungal sequences in Zodletone Spring clone libraries represents a general pattern in anaerobic habitats, we generated three clone libraries from three different anaerobic settings (anaerobic sewage digester, pond sediment, and hydrocarbon-exposed aquifer sediments) and partially sequenced 210 of these clones. Phylogenetic analysis indicated that clone sequences belonging to the kingdom Fungi represent a significant fraction of all three clone libraries, an observation confirmed by phospholipid fatty acid and ergosterol analysis. Overall, this work reveals an unexpected abundance of Fungi in anaerobic habitats, describes a novel, yet-uncultured group of Fungi that appears to be widespread in anaerobic habitats, and indicates that several of the previously considered marine protists could also occur in nonmarine habitats.


Assuntos
Células Eucarióticas/classificação , Água Doce/microbiologia , Água Doce/parasitologia , Sulfetos/metabolismo , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Biblioteca Gênica , Dados de Sequência Molecular , Oklahoma , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
19.
Appl Environ Microbiol ; 71(10): 6308-18, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16204552

RESUMO

The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


Assuntos
Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Urânio/metabolismo , Acetatos/metabolismo , Biodegradação Ambiental , DNA Bacteriano/análise , DNA Ribossômico/análise , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Compostos Férricos/metabolismo , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Poluição da Água
20.
J Environ Sci Health B ; 40(5): 731-40, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16190017

RESUMO

Extraction is an important procedure for samples that contain soil because other compounds in soil may affect analysis of estrogens. This study was conducted to evaluate three different extraction methods for 17beta-estradiol in soil. Sand, bentonite, and organic-rich silt loam were spiked with 1 mg kg(-1) of 17beta-estradiol as a model compound of estrogens. 17beta-estradiol and its metabolites, estrone and estriol, were extracted using (i) a modified Bligh and Dyer extraction, (ii) a pressurized fluid extraction, and (iii) a diethyl ether extraction, and measured by liquid chromatography tandem mass spectrometry. There were significant differences in the extraction efficiency for 17beta-estradiol among the extraction methods and the soils: the efficiencies ranged from 10% to 97%. Overall, the diethyl ether extraction method had the largest efficiency of 17beta-estradiol with 45% and 57% for bentonite and silt loam, respectively. Transformation of 17beta-estradiol to estrone and estriol in the different extraction methods was less than 3.6% during the extraction procedures. This study underlined the importance of sample preparation for estrogen analysis in soil samples.


Assuntos
Estradiol/química , Poluentes do Solo/análise , Solo/análise , Bentonita/análise , Cromatografia Líquida , Humanos , Dióxido de Silício/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA