Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 111(2): 483-495, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38625059

RESUMO

Both obesity and exposure to environmental genotoxicants, such as 7,12-dimethylbenz[a]anthracene, negatively impair female reproductive health. Hyperphagic lean KK.Cg-a/a (n = 8) and obese KK.Cg-Ay/J (n = 10) mice were exposed to corn oil as vehicle control (CT) or 7,12-dimethylbenz[a]anthracene (1 mg/kg/day) for 7d intraperitoneally, followed by a recovery period. Obesity increased liver and spleen weight (P < 0.05), and 7,12-dimethylbenz[a]anthracene exposure decreased uterine weight (P < 0.05) in obese mice. Primordial follicle loss (P < 0.05) caused by 7,12-dimethylbenz[a]anthracene exposure was observed in obese mice only. Primary (lean P < 0.1; obese P < 0.05) and secondary (lean P < 0.05, obese P < 0.1) follicle loss initiated by 7,12-dimethylbenz[a]anthracene exposure continued across recovery. Reduced pre-antral follicle number in lean mice (P < 0.05), regardless of 7,12-dimethylbenz[a]anthracene exposure, was evident with no effect on antral follicles or corpora lutea number. Immunofluorescence staining of DNA damage marker, γH2AX, did not indicate ongoing DNA damage but TRP53 abundance was decreased in follicles (P < 0.05) of 7,12-dimethylbenz[a]anthracene-exposed obese mice. In contrast, increased (P < 0.05) superoxide dismutase was observed in the corpora lutea of 7,12-dimethylbenz[a]anthracene-exposed obese mice and reduced (P < 0.05) TRP53 abundance was noted in preantral and antral follicles of 7,12-dimethylbenz[a]anthracene-exposed obese mice. This study indicates that obesity influences ovotoxicity caused by a genotoxicant, potentially involving accelerated primordial follicle activation and hampering normal follicular dynamics.


Assuntos
9,10-Dimetil-1,2-benzantraceno , Obesidade , Folículo Ovariano , Animais , Feminino , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Camundongos , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Obesidade/induzido quimicamente , Obesidade/metabolismo , Camundongos Obesos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
2.
Reprod Toxicol ; 124: 108553, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307155

RESUMO

Fetal hepatic dimethylbenz(a)anthracene (DMBA) biotransformation is not defined, thus, this study investigated whether the fetal liver metabolizes DMBA and differs with biological sex. KK.Cg-a/a (lean; n = 20) or KK.Cg-Ay/J (obese; n = 20) pregnant mice were exposed to corn oil (CT) or DMBA (1 mg/kg bw/day) by intraperitoneal injection (n = 10/treatment) from gestation day 7-14. Postnatal day 2 male or female offspring livers were collected. Total RNA (n = 6) and protein (n = 6) were analyzed via a PCR-based array or LC-MS/MS, respectively. The level of Mgst3 was lower (P < 0.05) in livers of female compared to male offspring. Furthermore, in utero DMBA exposure increased (P < 0.1) Cyp2c29 and Gpx3 levels (P < 0.05) in female offspring. In male offspring, the abundance of Ahr, Comt (P < 0.1), Alox5, and Asna1 (P < 0.05) decreased due to DMBA exposure. Female and male offspring had 34 and 21 hepatic proteins altered (P < 0.05) by in utero DMBA exposure, respectively. Opposing patterns for hepatic CD81 and KRT78 occurred, being decreased in females but increased in males, while YWHAG was decreased by DMBA exposure in both. Functional KEGG pathway analysis identified enrichment of 26 and 13 hepatic metabolic proteins in male and female offspring, respectively, due to in utero DMBA exposure. In silico transcription factor analysis of differentially expressed proteins predicted involvement of female NRF1 but male AHR. Thus, hepatic biological sex differences and capacity to respond to toxicants in utero are supported.


Assuntos
9,10-Dimetil-1,2-benzantraceno , Caracteres Sexuais , Gravidez , Camundongos , Feminino , Masculino , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado/metabolismo
3.
Biol Reprod ; 110(2): 419-429, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856498

RESUMO

Histones are slowly evolving chromatin components and chromatin remodeling can incorporate histone variants differing from canonical histones as an epigenetic modification. Several identified histone variants are involved with the environmental stress-induced DNA damage response (DDR). Mechanisms of DDR in transcriptionally inactive, prophase-arrested oocytes and epigenetic regulation are under-explored in ovarian toxicology. The study objective was to identify ovarian proteomic and histone modifications induced by DMBA exposure and an influence of obesity. Post-pubertal wildtype (KK.Cg-a/a; lean) and agouti (KK.Cg-Ay/J; obese) female mice, were exposed to either corn oil (control; CT) or DMBA (1 mg/kg) for 7d via intraperitoneal injection (n = 10/treatment). Ovarian proteome analysis (LC-MS/MS) determined that obesity altered 225 proteins (P < 0.05) with histone 3 being the second least abundant (FC = -5.98, P < 0.05). Histone 4 decreased by 3.33-fold, histone variant H3.3 decreased by 3.05-fold, and H1.2, H1.4 and H1.1(alpha) variants increased by 1.59, 1.90 and 2.01-fold, respectively (P < 0.05). DMBA exposure altered 48 proteins in lean mice with no observed alterations in histones or histone variants. In obese mice, DMBA exposure altered 120 proteins and histone 2B abundance increased by 0.30-fold (P < 0.05). In DMBA-exposed mice, obesity altered the abundance of 634 proteins. Histones 4, 3 and 2A type 1-F decreased by 4.03, 3.71, 0.43-fold, respectively, whereas histone variant H1.2 and linker histone, H15 increased by 2.72- and 3.07-fold, respectively (P < 0.05). Thus, DMBA exposure alters histones and histone variants, and responsivity is more pronounced during obesity, potentially altering ovarian transcriptional regulation.


Assuntos
Epigênese Genética , Histonas , Camundongos , Feminino , Animais , Histonas/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Cromatina , Obesidade/induzido quimicamente , Obesidade/genética
4.
Biol Reprod ; 108(4): 694-707, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36702632

RESUMO

Obesity adversely affects reproduction, impairing oocyte quality, fecundity, conception, and implantation. The ovotoxicant, dimethylbenz[a]anthracene, is biotransformed into a genotoxic metabolite to which the ovary responds by activating the ataxia telangiectasia mutated DNA repair pathway. Basal ovarian DNA damage coupled with a blunted response to genotoxicant exposure occurs in obese females, leading to the hypothesis that obesity potentiates ovotoxicity through ineffective DNA damage repair. Female KK.Cg-a/a (lean) and KK.Cg-Ay/J (obese) mice received corn oil or dimethylbenz[a]anthracene (1 mg/kg) at 9 weeks of age for 7 days via intraperitoneal injection (n = 10/treatment). Obesity increased liver weight (P < 0.001) and reduced (P < 0.05) primary, preantral, and corpora lutea number. In lean mice, dimethylbenz[a]anthracene exposure tended (P < 0.1) to increase proestrus duration and reduced (P = 0.07) primordial follicle number. Dimethylbenz[a]anthracene exposure decreased (P < 0.05) uterine weight and increased (P < 0.05) primary follicle number in obese mice. Total ovarian abundance of BRCA1, γH2AX, H3K4me, H4K5ac, H4K12ac, and H4K16ac (P > 0.05) was unchanged by obesity or dimethylbenz[a]anthracene exposure. Immunofluorescence staining demonstrated decreased (P < 0.05) abundance of γH2AX foci in antral follicles of obese mice. In primary follicle oocytes, BRCA1 protein was reduced (P < 0.05) by dimethylbenz[a]anthracene exposure in lean mice. Obesity also decreased (P < 0.05) BRCA1 protein in primary follicle oocytes. These findings support both a follicle stage-specific ovarian response to dimethylbenz[a]anthracene exposure and an impact of obesity on this ovarian response.


Assuntos
9,10-Dimetil-1,2-benzantraceno , Proteína BRCA1 , Camundongos , Animais , Feminino , Proteína BRCA1/genética , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Camundongos Obesos , RNA Mensageiro/metabolismo , Reparo do DNA , Obesidade/induzido quimicamente , Obesidade/genética , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA