RESUMO
AIMS: Patients visiting the emergency department (ED) or hospitalized for heart failure (HF) are at increased risk for subsequent adverse outcomes, however effective risk stratification remains challenging. We utilized a machine-learning (ML)-based approach to identify HF patients at risk of adverse outcomes after an ED visit or hospitalization using a large regional administrative healthcare data system. METHODS AND RESULTS: Patients visiting the ED or hospitalized with HF between 2002-2016 in Alberta, Canada were included. Outcomes of interest were 30-day and 1-year HF-related ED visits, HF hospital readmission or all-cause mortality. We applied a feature extraction method using deep feature synthesis from multiple sources of health data and compared performance of a gradient boosting algorithm (CatBoost) with logistic regression modelling. The area under receiver operating characteristic curve (AUC-ROC) was used to assess model performance. We included 50,630 patients with 93,552 HF ED visits/hospitalizations. At 30-day follow-up in the holdout validation cohort, the AUC-ROC for the combined endpoint of HF ED visit, HF hospital readmission or death for the Catboost and logistic regression models was 74.16 (73.18-75.11) versus 62.25 (61.25-63.18), respectively. At 1-year follow-up corresponding values were 76.80 (76.1-77.47) versus 69.52 (68.77-70.26), respectively. AUC-ROC values for the endpoint of all-cause death alone at 30-days and 1-year follow-up were 83.21 (81.83-84.41) versus 69.53 (67.98-71.18), and 85.73 (85.14-86.29) versus 69.40 (68.57-70.26), for the CatBoost and logistic regression models, respectively. CONCLUSIONS: ML-based modelling with deep feature synthesis provided superior risk stratification for HF patients at 30-days and 1-year follow-up after an ED visit or hospitalization using data from a large administrative regional healthcare system.
RESUMO
Background: Tafamidis is a costly therapy that improves outcomes for patients with transthyretin amyloidosis cardiomyopathy (ATTR-CM), although significant knowledge gaps exist for predicting longer-term response to treatment. The purpose of this study was to examine baseline predictors of adverse outcomes and their association with tafamidis treatment in comparison with those untreated in a clinical cohort from a Canadian ATTR-CM referral center. Methods: Patients with a confirmed diagnosis of ATTR-CM were included. Multivariable modeling was used to identify baseline variables associated with the primary outcome of all-cause mortality and secondary outcomes of cardiovascular mortality or hospitalization. Cox proportional hazard and competing risk analyses were used, with tafamidis modeled as a time-varying covariate. Results: In total, 139 ATTR-CM patients were included, with a median age of 80.9 years [74.3-86.6 years], from 2011 to 2022. The mean follow-up was 2.9 ± 1.8 years. Eighty (55%) patients were treated with tafamidis. All-cause mortality and cardiovascular mortality alone were associated with the following baseline variables: age, clinical frailty scale, systolic blood pressure, renal function, and right ventricular size and function (all p < 0.05), with no identified interactions with tafamidis treatment. Only baseline renal function was associated with cardiovascular hospitalization (p < 0.05). Conclusion: Important baseline variables associated with adverse ATTR-CM disease outcomes included renal function, systolic blood pressure, frailty, and right ventricular size and function. The risk factors were independent of treatment with tafamidis. These findings may help improve risk stratification for determining eligibility for ATTR-CM therapies.
RESUMO
Introduction: Short-term clinical outcomes from SARS-CoV-2 infection are generally favorable. However, 15-20% of patients report persistent symptoms of at least 12 weeks duration, often referred to as long COVID. Population studies have also demonstrated an increased risk of incident diabetes and cardiovascular disease at 12 months following infection. While imaging studies have identified multi-organ injury patterns in patients with recovered COVID-19, their respective contributions to the disability and morbidity of long COVID is unclear. Methods: A multicenter, observational study of 215 vaccine-naïve patients with clinically recovered COVID-19, studied at 3-6 months following infection, and 133 healthy volunteers without prior SARS-CoV-2 infection. Patients with recovered COVID-19 were screened for long COVID related symptoms and their impact on daily living. Multi-organ, multi-parametric magnetic resonance imaging (MRI) and circulating biomarkers were acquired to document sub-clinical organ pathology. All participants underwent pulmonary function, aerobic endurance (6 min walk test), cognition testing and olfaction assessment. Clinical outcomes were collected up to 1 year from infection. The primary objective of this study is to identify associations between organ injury and disability in patients with long-COVID symptoms in comparison to controls. As a secondary objective, imaging and circulating biomarkers with the potential to exacerbate cardiovascular health were characterized. Discussion: Long-term sequelae of COVID-19 are common and can result in significant disability and cardiometabolic disease. The overall goal of this project is to identify novel targets for the treatment of long COVID including mitigating the risk of incident cardiovascular disease. Study registration: clinicaltrials.gov (MOIST late cross-sectional study; NCT04525404).
RESUMO
RASopathies cause nonsarcomeric hypertrophic cardiomyopathy via dysregulated signaling through RAS and upregulated mitogen-activated protein kinase activity. We provide the first report of the successful treatment of an adult with RAF1-associated hypertrophic cardiomyopathy using trametinib, a MEK inhibitor.
RESUMO
Hypertrophic cardiomyopathy (HCM) is a common hereditable cardiomyopathy that affects between 1:200 to 1:500 of the general population. The role of cardiovascular magnetic resonance (CMR) imaging in the management of HCM has expanded over the past 2 decades to become a key informant of risk in this patient population, delivering unique insights into tissue health and its influence on future outcomes. Numerous mature CMR-based techniques are clinically available for the interrogation of tissue health in patients with HCM, inclusive of contrast and noncontrast methods. Late gadolinium enhancement imaging remains a cornerstone technique for the identification and quantification of myocardial fibrosis with large cumulative evidence supporting value for the prediction of arrhythmic outcomes. T1 mapping delivers improved fidelity for fibrosis quantification through direct estimations of extracellular volume fraction but also offers potential for noncontrast surrogate assessments of tissue health. Water-sensitive imaging, inclusive of T2-weighted dark blood imaging and T2 mapping, have also shown preliminary potential for assisting in risk discrimination. Finally, emerging techniques, inclusive of innovative multiparametric methods, are expanding the utility of CMR to assist in the delivery of comprehensive tissue characterization toward the delivery of personalized HCM care. In this narrative review we summarize the contemporary landscape of CMR techniques aimed at characterizing tissue health in patients with HCM. The value of these respective techniques to identify patients at elevated risk of future cardiovascular outcomes are highlighted.
Assuntos
Cardiomiopatia Hipertrófica , Imagem Cinética por Ressonância Magnética , Humanos , Cardiomiopatia Hipertrófica/diagnóstico , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio/patologia , FibroseRESUMO
AIMS: Women with angina and non-obstructive coronary artery disease (ANOCA) have a heightened risk for cardiovascular events, and the pathophysiology for ischaemic symptoms may be related to alterations in microvascular structure and function. We examined the use of breathing-enhanced oxygenation-sensitive cardiac magnetic resonance imaging (OS-CMR) using vasoactive breathing manoeuvres to assess myocardial oxygenation in women with ANOCA. METHODS AND RESULTS: We recruited women (aged 40-65 years) from two sites in Canada who presented to healthcare with persistent retrosternal chest pain and found to have ANOCA, or without a history of cardiovascular disease. All participants were scanned using a clinical 3T MRI scanner, and OS-CMR images were acquired over a breath hold following paced hyperventilation to measure global and regional measurements of heterogeneity. Fifty-four women with ANOCA (age: 55 ± 6.2 years) and 48 healthy controls (age: 51.2 ± 4.8 years) were recruited. There was no significant difference in volume, function, mass, or global myocardial oxygenation between the two groups [mean %Δ in signal intensity (SI): 4.9 (±7.3) vs. 4.5 (±10.1), P = 0.82]. Women with ANOCA had higher regional variations in myocardial oxygenation in circumferential [median %Δ in SI: 5.1 (2.0-7.6) vs. 2.2 (1.4-3.5), P = 0.0004] and longitudinal directions [median %Δ in SI: 11.4 (5.4-16.7) vs. 6.0 (3.0-7.0), P = 0.001], which remained present in a multivariate model. CONCLUSION: Heterogeneous myocardial oxygenation may explain ischaemic symptoms without any associated epicardial obstructive coronary artery disease. Regional variations in myocardial oxygenation on OS-CMR could serve as an important diagnostic marker for microvascular dysfunction in women with ANOCA.
Assuntos
Angina Pectoris , Doença da Artéria Coronariana , Imagem Cinética por Ressonância Magnética , Humanos , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Adulto , Angina Pectoris/diagnóstico por imagem , Angina Pectoris/fisiopatologia , Idoso , Imagem Cinética por Ressonância Magnética/métodos , Estudos de Casos e Controles , Canadá , Consumo de Oxigênio/fisiologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Circulação Coronária/fisiologiaRESUMO
AIMS: We sought to characterize sex-related differences in cardiovascular magnetic resonance-based cardiovascular phenotypes and prognosis in patients with idiopathic non-ischaemic cardiomyopathy (NICM). METHODS AND RESULTS: Patients with NICM enrolled in the Cardiovascular Imaging Registry of Calgary (CIROC) between 2015 and 2021 were identified. Z-score values for chamber volumes and function were calculated as standard deviation from mean values of 157 sex-matched healthy volunteers, ensuring reported differences were independent of known sex-dependencies. Patients were followed for the composite outcome of all-cause mortality, heart failure admission, or ventricular arrhythmia. A total of 747 patients were studied, 531 (71%) males. By Z-score values, females showed significantly higher left ventricular (LV) ejection fraction (EF; median difference 1â SD) and right ventricular (RV) EF (difference 0.6â SD) with greater LV mass (difference 2.1â SD; P < 0.01 for all) vs. males despite similar chamber volumes. Females had a significantly lower prevalence of mid-wall striae (MWS) fibrosis (22% vs. 34%; P < 0.001). Over a median follow-up of 4.7 years, 173 patients (23%) developed the composite outcome, with equal distribution in males and females. LV EF and MWS were significant independent predictors of the outcome (respective HR [95% CI] 0.97 [0.95-0.99] and 1.6 [1.2-2.3]; P = 0.003 and 0.005). There was no association of sex with the outcome. CONCLUSION: In a large contemporary cohort, NICM was uniquely expressed in females vs. males. Despite similar chamber dilation, females demonstrated greater concentric remodelling, lower reductions in bi-ventricular function, and a lower burden of replacement fibrosis. Overall, their prognosis remained similar to male patients with NICM.
Assuntos
Cardiomiopatias , Imagem Cinética por Ressonância Magnética , Fenótipo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Prognóstico , Imagem Cinética por Ressonância Magnética/métodos , Fatores Sexuais , Idoso , Volume Sistólico/fisiologia , Sistema de Registros , Estudos RetrospectivosRESUMO
Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs.
Assuntos
Consenso , Desfibriladores Implantáveis , Imageamento por Ressonância Magnética , Marca-Passo Artificial , Valor Preditivo dos Testes , Humanos , Fatores de Risco , Medição de Risco , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/efeitos adversos , Tomada de Decisão Clínica , Arritmias Cardíacas/terapia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Cardioversão Elétrica/instrumentação , Cardioversão Elétrica/efeitos adversos , Cardiopatias/diagnóstico por imagem , Cardiopatias/terapiaRESUMO
AIMS: Patients with bicuspid aortic valve (BAV) and aortic regurgitation have higher rate of aortic complications compared with patients with BAV and stenosis, as well as BAV without valvular disease. Aortic regurgitation alters blood haemodynamics not only in systole but also during diastole. We therefore sought to investigate wall shear stress (WSS) during the whole cardiac cycle in BAV with aortic regurgitation. METHODS AND RESULTS: Fifty-seven subjects that underwent 4D flow cardiovascular magnetic resonance imaging were included: 13 patients with BAVs without valve disease, 14 BAVs with aortic regurgitation, 15 BAVs with aortic stenosis, and 22 normal controls with tricuspid aortic valve. Peak and time averaged WSS in systole and diastole and the oscillatory shear index (OSI) in the ascending aorta were computed. Student's t-tests were used to compare values between the four groups where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. BAVs with regurgitation had similar peak and time averaged WSS compared with the patients with BAV without valve disease and with stenosis, and no regions of elevated WSS were found. BAV with aortic regurgitation had twice as high OSI as the other groups (P ≤ 0.001), and mainly in the outer mid-to-distal ascending aorta. CONCLUSION: OSI uniquely characterizes altered WSS patterns in BAVs with aortic regurgitation, and thus could be a haemodynamic marker specific for this specific group that is at higher risk of aortic complications. Future longitudinal studies are needed to verify this hypothesis.
Assuntos
Insuficiência da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Humanos , Insuficiência da Valva Aórtica/diagnóstico por imagem , Estudos Transversais , Constrição Patológica , Imageamento por Ressonância Magnética , Valva Aórtica/diagnóstico por imagem , Hemodinâmica , Espectroscopia de Ressonância Magnética , Estresse MecânicoRESUMO
Background The prognostic utility of cardiovascular magnetic resonance imaging, including strain analysis and tissue characterization, has not been comprehensively investigated in adult patients with muscular dystrophy. Methods and Results We prospectively enrolled 148 patients with dystrophinopathies (including heterozygotes), limb-girdle muscular dystrophy, and type 1 myotonic dystrophy (median age, 36.0 [interquartile range, 23.0-50.0] years; 51 [34.5%] women) over 7.7 years in addition to an age- and sex-matched healthy control cohort (n=50). Cardiovascular magnetic resonance markers, including 3-dimensional strain and fibrosis, were assessed for their respective association with major adverse cardiac events. Our results showed that markers of contractile performance were reduced across all muscular dystrophy groups. In particular, the dystrophinopathies cohort experienced reduced left ventricular (LV) ejection fraction and high burden of replacement fibrosis. Patients with type 1 myotonic dystrophy showed a 26.8% relative reduction in LV mass with corresponding reduction in chamber volumes. Eighty-two major adverse cardiac events occurred over a median follow-up of 5.2 years. Although LV ejection fraction was significantly associated with major adverse cardiac events (adjusted hazard ratio [aHR], 3.0 [95% CI, 1.4-6.4]) after adjusting for covariates, peak 3-dimensional strain amplitude demonstrated greater predictive value (minimum principal amplitude: aHR, 5.5 [95% CI, 2.5-11.9]; maximum principal amplitude: aHR, 3.3 [95% CI, 1.6-6.8]; circumferential amplitude: aHR, 3.4 [95% CI, 1.6-7.2]; longitudinal amplitude: aHR, 3.4 [95% CI, 1.7-6.9]; and radial strain amplitude: aHR, 3.0 [95% CI, 1.4-6.1]). Minimum principal strain yielded incremental prognostic value beyond LV ejection fraction for association with major adverse cardiac events (change in χ2=13.8; P<0.001). Conclusions Cardiac dysfunction is observed across all muscular dystrophy subtypes; however, the subtypes demonstrate distinct phenotypic profiles. Myocardial deformation analysis highlights unique markers of principal strain that improve risk assessment over other strain markers, LV ejection fraction, and late gadolinium enhancement in this vulnerable patient population.
Assuntos
Cardiopatias , Distrofia Miotônica , Adulto , Humanos , Feminino , Masculino , Prognóstico , Meios de Contraste , Imagem Cinética por Ressonância Magnética , Gadolínio , Imageamento por Ressonância Magnética , Função Ventricular Esquerda , Volume Sistólico , Fibrose , Espectroscopia de Ressonância MagnéticaRESUMO
PURPOSE: While implantable cardioverter-defibrillator (ICD) therapy provides clear benefit in patients with ischemic cardiomyopathy (ICM), this is less clear in patients with non-ischemic cardiomyopathy (NICM). Mid-wall striae (MWS) fibrosis is an established cardiovascular magnetic resonance (CMR) risk marker observed in patients with NICM. We evaluated whether patients with NICM and MWS have similar risk of arrhythmia-related cardiovascular events as patients with ICM. METHODS: We studied a cohort of patients undergoing CMR. The presence of MWS was adjudicated by experienced physicians. The primary outcome was a composite of implantable cardioverter-defibrillator (ICD) implant, hospitalization for ventricular tachycardia, resuscitated cardiac arrest, or sudden cardiac death. Propensity-matched analysis was performed to compare outcomes for patients NICM with MWS and ICM. RESULTS: A total of 1,732 patients were studied, 972 NICM (706 without MWS, 266 with MWS) and 760 ICM. NICM patients with MWS were more likely to experience the primary outcome versus those without MWS (unadjusted subdistribution hazard ratio (subHR) 2.26, 95% confidence interval [CI] 1.51-3.41) with no difference versus ICM patients (unadjusted subHR 1.32, 95% CI 0.93-1.86). Similar results were seen in a propensity-matched population (adjusted subHR 1.11, 95% CI 0.63-1.98, p = 0.711). CONCLUSION: Patients with NICM and MWS demonstrate significantly higher arrhythmic risk compared to NICM without MWS. After adjustment, the arrhythmia risk of patients with NICM and MWS was similar to patients with ICM. Accordingly, physicians could consider the presence of MWS when making clinical decisions regarding arrhythmia risk management in patients with NICM.
RESUMO
Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder caused by deficient activity of the enzyme alpha-galactosidase. While AFD is recognized as a progressive multi-system disorder, infiltrative cardiomyopathy causing a number of cardiovascular manifestations is recognized as an important complication of this disease. AFD affects both men and women, although the clinical presentation typically varies by sex, with men presenting at a younger age with more neurologic and renal phenotype and women developing a later onset variant with more cardiovascular manifestations. AFD is an important cause of increased myocardial wall thickness, and advances in imaging, in particular cardiac magnetic resonance imaging and T1 mapping techniques, have improved the ability to identify this disease non-invasively. Diagnosis is confirmed by the presence of low alpha-galactosidase activity and identification of a mutation in the GLA gene. Enzyme replacement therapy remains the mainstay of disease modifying therapy, with two formulations currently approved. In addition, newer treatments such as oral chaperone therapy are now available for select patients, with a number of other investigational therapies in development. The availability of these therapies has significantly improved outcomes for AFD patients. Improved survival and the availability of multiple agents has presented new clinical dilemmas regarding disease monitoring and surveillance using clinical, imaging and laboratory biomarkers, in addition to improved approaches to managing cardiovascular risk factors and AFD complications. This review will provide an update on clinical recognition and diagnostic approaches including differentiation from other causes of increased ventricular wall thickness, in addition to modern strategies for management and follow-up.
RESUMO
BACKGROUND: Transthyretin amyloidosis cardiomyopathy (ATTR-CM) patients are often older and may be at risk for obstructive epicardial coronary artery disease (oeCAD). While ATTR-CM may cause small vessel coronary disease, the prevalence and clinical significance of oeCAD is not well described. METHODS AND RESULTS: The prevalence and incidence of oeCAD and its association with all-cause mortality and hospitalization among 133 ATTR-CM patients with ≥ 1-year follow-up was evaluated. The mean age was 78 ± 9 years, 119 (89%) were male, 116 (87%) had wild-type and 17 (13%) had hereditary subtypes. Seventy-two (54%) patients underwent oeCAD investigations, with 30 (42%) receiving a positive diagnosis. Among patients with a positive oeCAD diagnosis, 23 (77%) were diagnosed prior to ATTR-CM diagnosis, 6 (20%) at the time of ATTR-CM diagnosis, and 1 (3%) after ATTR-CM diagnosis. Baseline characteristics between patients with and without oeCAD were similar. Among patients with oeCAD, only 2 (7%) required additional investigations, intervention or hospitalization after ATTR-CM diagnosis. After a median follow-up of 27 months there were 37 (28%) deaths in the study population, including 5 patients with oeCAD (17%). Fifty-six (42%) patients in the study population required hospitalization, including 10 patients with oeCAD (33%). There was no significant difference in the rates of death or hospitalization among ATTR-CM patients with and without oeCAD, and oeCAD was not significantly associated with either outcome by univariable regression analysis. CONCLUSIONS: While oeCAD is prevalent in ATTR-CM patients, this diagnosis is frequently known at time of ATTR-CM diagnosis and characteristics are similar to patients without oeCAD.
Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatias , Doença da Artéria Coronariana , Humanos , Masculino , Idoso , Idoso de 80 Anos ou mais , Feminino , Prevalência , Doença da Artéria Coronariana/complicações , Incidência , Neuropatias Amiloides Familiares/diagnóstico , Neuropatias Amiloides Familiares/epidemiologia , Neuropatias Amiloides Familiares/terapia , Cardiomiopatias/diagnóstico , Cardiomiopatias/epidemiologia , Cardiomiopatias/terapiaRESUMO
BACKGROUND: Abnormal global longitudinal strain (GLS) has been independently associated with adverse cardiac outcomes in both obstructive and nonobstructive hypertrophic cardiomyopathy. OBJECTIVES: The goal of this study was to understand predictors of abnormal GLS from baseline data from the National Heart, Lung, and Blood Institute (NHLBI) Hypertrophic Cardiomyopathy Registry (HCMR). METHODS: The study evaluated comprehensive 3-dimensional left ventricular myocardial strain from cine cardiac magnetic resonance in 2,311 patients from HCMR using in-house validated feature-tracking software. These data were correlated with other imaging markers, serum biomarkers, and demographic variables. RESULTS: Abnormal median GLS (> -11.0%) was associated with higher left ventricular (LV) mass index (93.8 ± 29.2 g/m2 vs 75.1 ± 19.7 g/m2; P < 0.0001) and maximal wall thickness (21.7 ± 5.2 mm vs 19.3 ± 4.1 mm; P < 0.0001), lower left (62% ± 9% vs 66% ± 7%; P < 0.0001) and right (68% ± 11% vs 69% ± 10%; P < 0.01) ventricular ejection fractions, lower left atrial emptying functions (P < 0.0001 for all), and higher presence and myocardial extent of late gadolinium enhancement (6 SD and visual quantification; P < 0.0001 for both). Elastic net regression showed that adjusted predictors of GLS included female sex, Black race, history of syncope, presence of systolic anterior motion of the mitral valve, reverse curvature and apical morphologies, LV ejection fraction, LV mass index, and both presence/extent of late gadolinium enhancement and baseline N-terminal pro-B-type natriuretic peptide and troponin levels. CONCLUSIONS: Abnormal strain in hypertrophic cardiomyopathy is associated with other imaging and serum biomarkers of increased risk. Further follow-up of the HCMR cohort is needed to understand the independent relationship between LV strain and adverse cardiac outcomes in hypertrophic cardiomyopathy.
Assuntos
Cardiomiopatia Hipertrófica , Meios de Contraste , Estados Unidos , Humanos , Feminino , Gadolínio , National Heart, Lung, and Blood Institute (U.S.) , Imagem Cinética por Ressonância Magnética , Valor Preditivo dos Testes , Função Ventricular Esquerda , Volume Sistólico , Biomarcadores , Sistema de RegistrosRESUMO
3-Dimensional (3D) myocardial deformation analysis (3D-MDA) enables novel descriptions of geometry-independent principal strain (PS). Applied to routine 2D cine cardiovascular magnetic resonance (CMR), this provides unique measures of myocardial biomechanics for disease diagnosis and prognostication. However, healthy reference values remain undefined. This study describes age- and sex-stratified reference values from CMR-based 3D-MDA, including 3D PS. One hundred healthy volunteers were prospectively recruited following institutional ethics approval and underwent CMR imaging. 3D-MDA was performed using validated software. Age- and sex-stratified global and segmental strain measures were derived for conventional geometry-dependent [circumferential (CS), longitudinal (LS), and radial (RS)] and geometry-independent [minimum (minPS) and maximum principal (maxPS)] directions of deformation. Layer-specific contraction angle interactions were determined using local minPS vectors. The average age was 43 ± 15 years and 55% were women. Strain measures were higher in women versus men. 3D PS-based assessment of maximum tissue shortening (minPS) and maximum tissue thickening (maxPS) were greater than corresponding geometry-dependent markers of LS and RS, consistent with improved representation of local tissue deformations. Global maxPS amplitude best discriminated both age and sex. Segmental analyses showed greater strain amplitudes in apical segments. Transmural PS contraction angles were higher in females and showed a heterogeneous distribution across segments. In this study we provided age and sex-based reference values for 3D strain from CMR imaging, demonstrating improved capacity for 3D PS to document maximal local tissue deformations and to discriminate age and sex phenotypes. Novel markers of layer-specific strain angles from 3D PS were also described.
Assuntos
Coração , Função Ventricular Esquerda , Feminino , Masculino , Animais , Valores de Referência , Valor Preditivo dos Testes , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Reprodutibilidade dos TestesRESUMO
Given the inherent complexities of Fabry disease (FD) and evolving landscape of cardiovascular clinical management, there is no established ideal clinical care model for these patients. We identified clinical factors predictive of increased risk of major adverse cardiac events (MACE) in patients with FD targeted to improve clinical outcomes. Ninety-five patients studied over a median follow-up time of 6.3 years, and 26 patients reached the composite endpoint with a high prevalence of heart failure and cerebrovascular events and no cardiac-related mortality. Patients with MACE had worse health-related quality of life scores. Hypertrophy and presence of myocardial fibrosis increase risk of MACE by 4-5 times, and dyslipidemia increases risk of MACE by 3 times. Early Fabry-specific treatment and close monitoring of comorbidities reduce cardiac complications and mortality. These findings highlight the importance of comprehensive multidisciplinary management to help improve outcomes in FD patients.
Assuntos
Doença de Fabry , Cardiopatias , Insuficiência Cardíaca , Humanos , Doença de Fabry/complicações , Doença de Fabry/terapia , Doença de Fabry/epidemiologia , Qualidade de Vida , Imageamento por Ressonância Magnética , Insuficiência Cardíaca/complicaçõesRESUMO
Background: Atrial fibrillation (AF) is a commonly encountered cardiac arrhythmia associated with morbidity and substantial healthcare costs. While patients with cardiovascular disease experience the greatest risk of new-onset AF, no risk model has been developed to predict AF occurrence in this population. We hypothesized that a patient-specific model could be delivered using cardiovascular magnetic resonance (CMR) disease phenotyping, contextual patient health information, and machine learning. Methods: Nine thousand four hundred forty-eight patients referred for CMR imaging were enrolled and followed over a 5-year period. Seven thousand, six hundred thirty-nine had no prior history of AF and were eligible to train and validate machine learning algorithms. Random survival forests (RSFs) were used to predict new-onset AF and compared to Cox proportional-hazard (CPH) models. The best performing features were identified from 115 variables sourced from three data domains: (i) CMR-based disease phenotype, (ii) patient health questionnaire, and (iii) electronic health records. We evaluated discriminative performance of optimized models using C-index and time-dependent AUC (tAUC). Results: A RSF-based model of 20 variables (CIROC-AF-20) delivered an overall C-index of 0.78 for the prediction of new-onset AF with respective tAUCs of 0.80, 0.79, and 0.78 at 1-, 2- and 3-years. This outperformed a novel CPH-based model and historic AF risk scores. At 1-year of follow-up, validation cohort patients classified as high-risk of future AF by CIROC-AF-20 went on to experience a 17.3% incidence of new-onset AF, being 24.7-fold higher risk than low risk patients. Conclusions: Using phenotypic data available at time of CMR imaging we developed and validated the first described risk model for the prediction of new-onset AF in patients with cardiovascular disease. Complementary value was provided by variables from patient-reported measures of health and the electronic health record, illustrating the value of multi-domain phenotypic data for the prediction of AF.
RESUMO
Background: Bicuspid aortic valve (BAV) is more than a congenital defect since it is accompanied by several secondary complications that intensify induced impairments. Hence, BAV patients need lifelong evaluations to prevent severe clinical sequelae. We applied 4D-flow magnetic resonance imaging (MRI) for in detail visualization and quantification of in vivo blood flow to verify the reliability of the left ventricular (LV) flow components and pressure drops in the silent BAV subjects with mild regurgitation and preserved ejection fraction (pEF). Materials and methods: A total of 51 BAV patients with mild regurgitation and 24 healthy controls were recruited to undergo routine cardiac MRI followed by 4D-flow MRI using 3T MRI scanners. A dedicated 4D-flow module was utilized to pre-process and then analyze the LV flow components (direct flow, retained inflow, delayed ejection, and residual volume) and left-sided [left atrium (LA) and LV] local pressure drop. To elucidate significant diastolic dysfunction in our population, transmitral early and late diastolic 4D flow peak velocity (E-wave and A-wave, respectively), as well as E/A ratio variable, were acquired. Results: The significant means differences of each LV flow component (global measurement) were not observed between the two groups (p > 0.05). In terms of pressure analysis (local measurement), maximum and mean as well as pressure at E-wave and A-wave timepoints at the mitral valve (MV) plane were significantly different between BAV and control groups (p: 0.005, p: 0.02, and p: 0.04 and p: <0.001; respectively). Furthermore, maximum pressure and pressure difference at the A-wave timepoint at left ventricle mid and left ventricle apex planes were significant. Although we could not find any correlation between LV diastolic function and flow components, Low but statistically significant correlations were observed with local pressure at LA mid, MV and LV apex planes at E-wave timepoint (R: -0.324, p: 0.005, R: -0.327, p: 0.004, and R: -0.306, p: 0.008, respectively). Conclusion: In BAV patients with pEF, flow components analysis is not sensitive to differentiate BAV patients with mild regurgitation and healthy control because flow components and EF are global parameters. Inversely, pressure (local measurement) can be a more reliable biomarker to reveal the early stage of diastolic dysfunction.
RESUMO
Extreme endurance athletic challenges provide unique opportunities to study the cardiovascular system's capacity for structural, functional, and hemodynamic adaptation. The authors present a case of a male subject who ran 2,469 km, with serial multiparametric cardiac magnetic resonance imaging used to demonstrate adaptive and maladaptive alterations in cardiac remodeling and myocardial tissue health. (Level of Difficulty: Advanced.).