Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1239069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293651

RESUMO

SCN2A is an autism spectrum disorder (ASD) risk gene and encodes a voltage-gated sodium channel. However, the impact of ASD-associated SCN2A de novo variants on human neuron development is unknown. We studied SCN2A using isogenic SCN2A-/- induced pluripotent stem cells (iPSCs), and patient-derived iPSCs harboring a de novo R607* truncating variant. We used Neurogenin2 to generate excitatory (glutamatergic) neurons and found that SCN2A+/R607* and SCN2A-/- neurons displayed a reduction in synapse formation and excitatory synaptic activity. We found differential impact on actional potential dynamics and neuronal excitability that reveals a loss-of-function effect of the R607* variant. Our study reveals that a de novo truncating SCN2A variant impairs the development of human neuronal function.

2.
Elife ; 82019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747104

RESUMO

Induced pluripotent stem cell (iPSC)-derived neurons are increasingly used to model Autism Spectrum Disorder (ASD), which is clinically and genetically heterogeneous. To study the complex relationship of penetrant and weaker polygenic risk variants to ASD, 'isogenic' iPSC-derived neurons are critical. We developed a set of procedures to control for heterogeneity in reprogramming and differentiation, and generated 53 different iPSC-derived glutamatergic neuronal lines from 25 participants from 12 unrelated families with ASD. Heterozygous de novo and rare-inherited presumed-damaging variants were characterized in ASD risk genes/loci. Combinations of putative etiologic variants (GLI3/KIF21A or EHMT2/UBE2I) in separate families were modeled. We used a multi-electrode array, with patch-clamp recordings, to determine a reproducible synaptic phenotype in 25% of the individuals with ASD (other relevant data on the remaining lines was collected). Our most compelling new results revealed a consistent spontaneous network hyperactivity in neurons deficient for CNTN5 or EHMT2. The biobank of iPSC-derived neurons and accompanying genomic data are available to accelerate ASD research. Editorial note: This article has been through an editorial process in which authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Transtorno Autístico/fisiopatologia , Contactinas/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Adolescente , Adulto , Células Cultivadas , Criança , Contactinas/deficiência , Contactinas/genética , Fenômenos Eletrofisiológicos , Feminino , Heterozigoto , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Adulto Jovem , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
4.
Mol Psychiatry ; 24(9): 1329-1350, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29467497

RESUMO

Atypical brain connectivity is a major contributor to the pathophysiology of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASDs). TAOK2 is one of several genes in the 16p11.2 microdeletion region, but whether it contributes to NDDs is unknown. We performed behavioral analysis on Taok2 heterozygous (Het) and knockout (KO) mice and found gene dosage-dependent impairments in cognition, anxiety, and social interaction. Taok2 Het and KO mice also have dosage-dependent abnormalities in brain size and neural connectivity in multiple regions, deficits in cortical layering, dendrite and synapse formation, and reduced excitatory neurotransmission. Whole-genome and -exome sequencing of ASD families identified three de novo mutations in TAOK2 and functional analysis in mice and human cells revealed that all the mutations impair protein stability, but they differentially impact kinase activity, dendrite growth, and spine/synapse development. Mechanistically, loss of Taok2 activity causes a reduction in RhoA activation, and pharmacological enhancement of RhoA activity rescues synaptic phenotypes. Together, these data provide evidence that TAOK2 is a neurodevelopmental disorder risk gene and identify RhoA signaling as a mediator of TAOK2-dependent synaptic development.


Assuntos
Transtorno do Espectro Autista/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adulto , Animais , Ansiedade/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/psicologia , Criança , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Dendritos/metabolismo , Dendritos/patologia , Feminino , Humanos , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/psicologia , Neurogênese , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Transmissão Sináptica , Sequenciamento do Exoma
5.
Stem Cell Reports ; 11(5): 1211-1225, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30392976

RESUMO

Autism spectrum disorder (ASD) is phenotypically and genetically heterogeneous. We present a CRISPR gene editing strategy to insert a protein tag and premature termination sites creating an induced pluripotent stem cell (iPSC) knockout resource for functional studies of ten ASD-relevant genes (AFF2/FMR2, ANOS1, ASTN2, ATRX, CACNA1C, CHD8, DLGAP2, KCNQ2, SCN2A, TENM1). Neurogenin 2 (NGN2)-directed induction of iPSCs allowed production of excitatory neurons, and mutant proteins were not detectable. RNA sequencing revealed convergence of several neuronal networks. Using both patch-clamp and multi-electrode array approaches, the electrophysiological deficits measured were distinct for different mutations. However, they culminated in a consistent reduction in synaptic activity, including reduced spontaneous excitatory postsynaptic current frequencies in AFF2/FMR2-, ASTN2-, ATRX-, KCNQ2-, and SCN2A-null neurons. Despite ASD susceptibility genes belonging to different gene ontologies, isogenic stem cell resources can reveal common functional phenotypes, such as reduced functional connectivity.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Edição de Genes , Predisposição Genética para Doença , Neurônios/metabolismo , Neurônios/patologia , Linhagem Celular , Eletrodos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutagênese Insercional/genética , Fenótipo
6.
Am J Hum Genet ; 102(2): 278-295, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395074

RESUMO

Copy-number variations (CNVs) are strong risk factors for neurodevelopmental and psychiatric disorders. The 15q13.3 microdeletion syndrome region contains up to ten genes and is associated with numerous conditions, including autism spectrum disorder (ASD), epilepsy, schizophrenia, and intellectual disability; however, the mechanisms underlying the pathogenesis of 15q13.3 microdeletion syndrome remain unknown. We combined whole-genome sequencing, human brain gene expression (proteome and transcriptome), and a mouse model with a syntenic heterozygous deletion (Df(h15q13)/+ mice) and determined that the microdeletion results in abnormal development of cortical dendritic spines and dendrite outgrowth. Analysis of large-scale genomic, transcriptomic, and proteomic data identified OTUD7A as a critical gene for brain function. OTUD7A was found to localize to dendritic and spine compartments in cortical neurons, and its reduced levels in Df(h15q13)/+ cortical neurons contributed to the dendritic spine and dendrite outgrowth deficits. Our results reveal OTUD7A as a major regulatory gene for 15q13.3 microdeletion syndrome phenotypes that contribute to the disease mechanism through abnormal cortical neuron morphological development.


Assuntos
Transtornos Cromossômicos/enzimologia , Transtornos Cromossômicos/genética , Enzimas Desubiquitinantes/fisiologia , Endopeptidases/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Convulsões/enzimologia , Convulsões/genética , Animais , Transtorno do Espectro Autista/genética , Deleção Cromossômica , Cromossomos Humanos Par 15/enzimologia , Cromossomos Humanos Par 15/genética , Espinhas Dendríticas/metabolismo , Enzimas Desubiquitinantes/genética , Endopeptidases/metabolismo , Feminino , Deleção de Genes , Estudos de Associação Genética , Humanos , Masculino , Camundongos , Fenótipo , Prosencéfalo/patologia
7.
Neuroscience ; 372: 273-288, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29306054

RESUMO

Changes to neuronal activity often involve a rapid and precise transition from low to high excitability. In the marine snail, Aplysia, the bag cell neurons control reproduction by undergoing an afterdischarge, which begins with synaptic input releasing acetylcholine to open an ionotropic cholinergic receptor. Gating of this receptor causes depolarization and a shift from silence to continuous action potential firing, leading to the neuroendocrine secretion of egg-laying hormone and ovulation. At the onset of the afterdischarge, there is a rise in intracellular Ca2+, followed by both protein kinase C (PKC) activation and tyrosine dephosphorylation. To determine whether these signals influence the acetylcholine ionotropic receptor, we examined the bag cell neuron cholinergic response both in culture and isolated clusters using whole-cell and/or sharp-electrode electrophysiology. The acetylcholine-induced current was not altered by increasing intracellular Ca2+ via voltage-gated Ca2+ channels, clamping intracellular Ca2+ with exogenous Ca2+ buffers, or activating PKC with phorbol esters. However, lowering phosphotyrosine levels by inhibiting tyrosine kinases both reduced the cholinergic current and prevented acetylcholine from triggering action potentials or afterdischarge-like bursts. In other systems, acetylcholine receptors are often modulated by multiple signals, but bag cell neurons appear to be more restrictive in this regard. Prior work finds that, as the afterdischarge proceeds, tyrosine dephosphorylation leads to biophysical alterations that promote persistent firing. Because this firing is subsequent to the cholinergic input, inhibiting the acetylcholine receptor may represent a means of properly orchestrating synaptically induced changes in excitability.


Assuntos
Potenciais da Membrana/fisiologia , Receptores Colinérgicos/metabolismo , Tirosina/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Animais , Aplysia , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Células Cultivadas , Genisteína/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Técnicas de Cultura de Tecidos
8.
Cell Rep ; 17(7): 1892-1904, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27829159

RESUMO

The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs). DIX domain containing 1 (DIXDC1) has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.


Assuntos
Dendritos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação/genética , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Mutação de Sentido Incorreto/genética , Fosforilação , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/metabolismo
9.
J Neurophysiol ; 115(5): 2635-48, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864763

RESUMO

Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPßS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K(+) with Cs(+) Consistent with an underlying mechanism of direct inhibition of one or more K(+) channels, nicotine was found to rapidly reduce the fast-inactivating A-type K(+) current as well as both components of the delayed-rectifier K(+) current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K(+) channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Neurônios/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Aplysia , Células Cultivadas , Césio/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
10.
J Neurophysiol ; 112(2): 446-62, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24740855

RESUMO

Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 µM, readily recovered from desensitization, showed Ca(2+) permeability, and was blocked by mecamylamine, dihydro-ß-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.


Assuntos
Potenciais de Ação , Células Neuroendócrinas/metabolismo , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Aplysia , Conotoxinas/farmacologia , Di-Hidro-beta-Eritroidina/farmacologia , Hexametônio/farmacologia , Mecamilamina/farmacologia , Células Neuroendócrinas/efeitos dos fármacos , Células Neuroendócrinas/fisiologia , Nicotina/farmacologia , Receptores Nicotínicos/genética , Estricnina/farmacologia , Transcriptoma
11.
J Neurophysiol ; 107(10): 2672-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22323635

RESUMO

A brief synaptic input to the bag cell neurons of Aplysia evokes a lengthy afterdischarge and the secretion of peptide hormones that trigger ovulation. The input transmitter is unknown, although prior work has shown that afterdischarges are prevented by strychnine. Because molluscan excitatory cholinergic synapses are blocked by strychnine, we tested the hypothesis that acetylcholine acts on an ionotropic receptor to initiate the afterdischarge. In cultured bag cell neurons, acetylcholine induced a short burst of action potentials followed by either return to near baseline or, like a true afterdischarge, transition to continuous firing. The current underlying the acetylcholine-induced depolarization was dose dependent, associated with increased membrane conductance, and sensitive to the nicotinic antagonists hexamethonium, mecamylamine, and α-conotoxin ImI. Whereas nicotine, choline, carbachol, and glycine did not mimic acetylcholine, tetramethylammonium did produce a similar current. Consistent with an ionotropic receptor, the response was not altered by intracellular dialysis with the G protein blocker guanosine 5'-(ß-thio)diphosphate. Recording from the intact bag cell neuron cluster showed acetylcholine to evoke prominent depolarization, which often led to extended bursting, but only in the presence of the acetylcholinesterase inhibitor neostigmine. Extracellular recording confirmed that exogenous acetylcholine caused genuine afterdischarges, which, as per those generated synaptically, rendered the cluster refractory to further stimulation. Finally, treatment with a combination of mecamylamine and α-conotoxin ImI blocked synaptically induced afterdischarges in the intact bag cell neuron cluster. Acetylcholine appears to elicit the afterdischarge through an ionotropic receptor. This represents an expedient means for transient stimulation to elicit prolonged firing in the absence of ongoing synaptic input.


Assuntos
Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Aplysia , Células Cultivadas , Conotoxinas/farmacologia , Hexametônio/farmacologia , Mecamilamina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Agonistas Nicotínicos/farmacologia , Sinapses/fisiologia
12.
J Neurophysiol ; 107(8): 2083-95, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22279188

RESUMO

As an immediate consequence of stroke onset, failure of the Na(+)-K(+)-ATPase pump evokes a propagating anoxic depolarization (AD) across gray matter. Acute neuronal swelling and dendritic beading arise within seconds in the future ischemic core, imaged as changes in light transmittance (ΔLT). AD is itself not a target for drug-based reduction of stroke injury because it is generated in the 1st min of stroke onset. Peri-infarct depolarizations (PIDs) are milder AD-like events that recur during the hours following AD and contribute to infarct expansion. Inhibiting PIDs with drugs could limit expansion. Two types of drugs, "caines" and σ(1)-receptor ligands, have been found to inhibit AD onset (and may also oppose PID initiation), yet their underlying actions have not been examined. Imaging ΔLT in the CA1 region simultaneously with whole cell current-clamp recording from CA1 pyramidal neurons reveal that the elevated LT front and onset of the AD are coincident. Either dibucaine or carbetapentane pretreatment significantly delays AD onset without affecting resting membrane potential or neuronal input resistance. Dibucaine decreases excitability by raising spike threshold and decreasing action potential (AP) frequency, whereas carbetapentane eliminates the fast afterhyperpolarization while accentuating the slow afterhyperpolarization to reduce AP frequency. Orthodromic and antidromic APs are eliminated by dibucaine within 15 min but not by carbetapentane. Thus both drugs reduce cortical excitability at the level of the single pyramidal neuron but through strikingly different mechanisms. In vivo, both drugs would likely inhibit recurring PIDs in the expanding penumbra and so potentially could reduce developing neuronal damage over many hours poststroke when PIDs occur.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Ciclopentanos/farmacologia , Dibucaína/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Masculino , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA