RESUMO
Obesity accelerates the onset and progression of age-related conditions. In preclinical models, obesity drives cellular senescence, a cell fate that compromises tissue health and function, in part through a robust and diverse secretome. In humans, components of the secretome have been used as senescence biomarkers that are predictive of age-related disease, disability, and mortality. Here, using biospecimens and clinical data from two large and independent cohorts of older adults, we tested the hypothesis that the circulating concentrations of senescence biomarkers are influenced by body mass index (BMI). After adjusting for age, sex, and race, we observed significant increases in activin A, Fas, MDC, PAI1, PARC, TNFR1, and VEGFA, and a significant decrease in RAGE, from normal weight, to overweight, to obesity BMI categories by linear regression in both cohorts (all p < 0.05). These results highlight the influence of BMI on circulating concentrations of senescence biomarkers.
RESUMO
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, phosphoinositide 3-kinase (PI3K)/AKT and receptor tyrosine kinases (RTKs), such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. The ESCRT components Vps4 and Hrs have previously been implicated in cholesterol homeostasis; thus, these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.
Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Homeostase , Lipodistrofia , Proteínas Tirosina Fosfatases não Receptoras , Transdução de Sinais , Animais , Camundongos , Lipodistrofia/metabolismo , Lipodistrofia/genética , Lipodistrofia/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Colesterol/metabolismo , Metabolismo dos Lipídeos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Tecido Adiposo Branco/metabolismoRESUMO
Serial crystallography (SX) has become an established technique for protein structure determination, especially when dealing with small or radiation-sensitive crystals and investigating fast or irreversible protein dynamics. The advent of newly developed multi-megapixel X-ray area detectors, capable of capturing over 1000 images per second, has brought about substantial benefits. However, this advancement also entails a notable increase in the volume of collected data. Today, up to 2â PB of data per experiment could be easily obtained under efficient operating conditions. The combined costs associated with storing data from multiple experiments provide a compelling incentive to develop strategies that effectively reduce the amount of data stored on disk while maintaining the quality of scientific outcomes. Lossless data-compression methods are designed to preserve the information content of the data but often struggle to achieve a high compression ratio when applied to experimental data that contain noise. Conversely, lossy compression methods offer the potential to greatly reduce the data volume. Nonetheless, it is vital to thoroughly assess the impact of data quality and scientific outcomes when employing lossy compression, as it inherently involves discarding information. The evaluation of lossy compression effects on data requires proper data quality metrics. In our research, we assess various approaches for both lossless and lossy compression techniques applied to SX data, and equally importantly, we describe metrics suitable for evaluating SX data quality.
Assuntos
Algoritmos , Compressão de Dados , Cristalografia , Compressão de Dados/métodos , Tomografia Computadorizada por Raios XRESUMO
Cachexia is a debilitating skeletal muscle wasting condition for which we currently lack effective treatments. In the context of cancer, certain chemotherapeutics cause DNA damage and cellular senescence. Senescent cells exhibit chronic activation of the transcription factor NF-κB, a known mediator of the proinflammatory senescence-associated secretory phenotype (SASP) and skeletal muscle atrophy. Thus, targeting NF-κB represents a logical therapeutic strategy to alleviate unintended consequences of genotoxic drugs. Herein, we show that treatment with the IKK/NF-κB inhibitor SR12343 during a course of chemotherapy reduces markers of cellular senescence and the SASP in liver, skeletal muscle, and circulation and, correspondingly, attenuates features of skeletal muscle pathology. Lastly, we demonstrate that SR12343 mitigates chemotherapy-induced reductions in body weight, lean mass, fat mass, and muscle strength. These findings support senescent cells as a promising druggable target to counteract the SASP and skeletal muscle wasting in the context of chemotherapy.
Assuntos
Antineoplásicos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Caquexia/induzido quimicamente , Caquexia/tratamento farmacológico , Senoterapia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Antineoplásicos/efeitos adversosRESUMO
Dynamic measures of resilience-the ability to resist and recover from a challenge-may be informative of the rate of aging before overt manifestations such as chronic disease, disability, and frailty. From this perspective mid-life resilience may predict longevity and late-life health. To test this hypothesis, we developed simple, reproducible, clinically relevant challenges, and outcome measures of physical resilience that revealed differences between and within age groups of genetically heterogeneous mice, and then examined associations between mid-life resilience and both lifespan and late-life measures of physiological function. We demonstrate that time to recovery from isoflurane anesthesia and weight change following a regimen of chemotherapy significantly differed among young, middle-aged, and older mice, and were more variable in older mice. Females that recovered faster than the median time from anesthesia (more resilient) at 12 months of age lived 8% longer than their counterparts, while more resilient males in mid-life exhibited better cardiac (fractional shortening and left ventricular volumes) and metabolic (glucose tolerance) function at 24 months of age. Moreover, female mice with less than the median weight loss at Day 3 of the cisplatin challenge lived 8% longer than those that lost more weight. In contrast, females who had more weight loss between Days 15 and 20 were relatively protected against early death. These data suggest that measures of physical resilience in mid-life may provide information about individual differences in aging, lifespan, and key parameters of late-life health.
Assuntos
Longevidade , Resiliência Psicológica , Masculino , Camundongos , Feminino , Animais , Longevidade/fisiologia , Envelhecimento/fisiologia , Exame Físico , Redução de PesoRESUMO
Calorie restriction (CR) with adequate nutrient intake is a potential geroprotective intervention. To advance this concept in humans, we tested the hypothesis that moderate CR in healthy young-to-middle-aged individuals would reduce circulating biomarkers of cellular senescence, a fundamental mechanism of aging and aging-related conditions. Using plasma specimens from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) phase 2 study, we found that CR significantly reduced the concentrations of several senescence biomarkers at 12 and 24 months compared to an ad libitum diet. Using machine learning, changes in biomarker concentrations emerged as important predictors of the change in HOMA-IR and insulin sensitivity index at 12 and 24 months, and the change in resting metabolic rate residual at 12 months. Finally, using adipose tissue RNA-sequencing data from a subset of participants, we observed a significant reduction in a senescence-focused gene set in response to CR at both 12 and 24 months compared to baseline. Our results advance the understanding of the effects of CR in humans and further support a link between cellular senescence and metabolic health.
Assuntos
Envelhecimento , Restrição Calórica , Pessoa de Meia-Idade , Humanos , Senescência Celular/genética , Ingestão de Energia , BiomarcadoresRESUMO
Studies in mice and cross-sectional studies in humans support the premise that cellular senescence is a contributing mechanism to age-associated deficits in physical function. We tested the hypotheses that circulating proteins secreted by senescent cells are (i) associated with the incidence of major mobility disability (MMD), the development of persistent mobility disability (PMMD), and decrements in physical functioning in older adults, and (ii) influenced by physical activity (PA). Using samples and data obtained longitudinally from the Lifestyle Interventions in Elders Study clinical trial, we measured a panel of 27 proteins secreted by senescent cells. Among 1 377 women and men randomized to either a structured PA intervention or a healthy aging (HA) intervention, we observed significant associations between several senescence biomarkers, most distinctly vascular endothelial growth factor A (VEGFA), tumor necrosis factor receptor 1 (TNFR1), and matrix metallopeptidase 7 (MMP7), and the onset of both MMD and PMMD. Moreover, VEGFA, GDF15, osteopontin, and other senescence biomarkers were associated with reductions in short physical performance battery scores. The change in senescence biomarkers did not differ between PA and HA participants. In the whole cohort, higher levels of PA were associated with significantly greater reductions in 10 senescence-related proteins at 12 and/or 24 months. These data reinforce cellular senescence as a contributing mechanism of age-associated functional decline and the potential for PA to attenuate this hallmark of aging. Clinical Trials Registration Number: NCT01072500.
Assuntos
Estilo de Vida , Fator A de Crescimento do Endotélio Vascular , Humanos , Masculino , Feminino , Animais , Camundongos , Idoso , Estudos Transversais , Terapia por Exercício , Senescência Celular , BiomarcadoresRESUMO
Senescent cells compromise tissue structure and function in older organisms. We recently identified senescent fibroadipogenic progenitors (FAPs) with activated chemokine signaling pathways in the skeletal muscle of old mice, and hypothesized these cells may contribute to the age-associated accumulation of immune cells in skeletal muscle. In this study, through cell-cell communication analysis of skeletal muscle single-cell RNA-sequencing data, we identified unique interactions between senescent FAPs and macrophages, including those mediated by Ccl2 and Spp1. Using mouse primary FAPs in vitro, we verified increased expression of Ccl2 and Spp1 and secretion of their respective proteins in the context of both irradiation- and etoposide-induced senescence. Compared to non-senescent FAPs, the medium of senescent FAPs markedly increased the recruitment of macrophages in an in vitro migration assay, an effect that was mitigated by preincubation with antibodies to either CCL2 or osteopontin (encoded by Spp1). Further studies demonstrated that the secretome of senescent FAPs promotes polarization of macrophages toward an M2 subtype. These data suggest the unique secretome of senescent FAPs may compromise skeletal muscle homeostasis by recruiting and directing the behavior of macrophages.
Assuntos
Macrófagos , Músculo Esquelético , Camundongos , Animais , Músculo Esquelético/metabolismo , Diferenciação Celular/fisiologiaRESUMO
A robust and heterogenous secretory phenotype is a core feature of most senescent cells. In addition to mediators of age-related pathology, components of the senescence associated secretory phenotype (SASP) have been studied as biomarkers of senescent cell burden and, in turn, biological age. Therefore, we hypothesized that circulating concentrations of candidate senescence biomarkers, including chemokines, cytokines, matrix remodeling proteins, and growth factors, could predict mortality in older adults. We assessed associations between plasma levels of 28 SASP proteins and risk of mortality over a median follow-up of 6.3 years in 1923 patients 65 years of age or older with zero or one chronic condition at baseline. Overall, the five senescence biomarkers most strongly associated with an increased risk of death were GDF15, RAGE, VEGFA, PARC, and MMP2, after adjusting for age, sex, race, and the presence of one chronic condition. The combination of biomarkers and clinical and demographic covariates exhibited a significantly higher c-statistic for risk of death (0.79, 95% confidence interval (CI): 0.76-0.82) than the covariates alone (0.70, CI: 0.67-0.74) (p < 0.001). Collectively, these findings lend further support to biomarkers of cellular senescence as informative predictors of clinically important health outcomes in older adults, including death.
Assuntos
Senescência Celular , Citocinas , Humanos , Idoso , Senescência Celular/genética , Biomarcadores , Citocinas/metabolismo , Fenótipo , Doença CrônicaRESUMO
Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.
RESUMO
BACKGROUND: Cellular senescence is a cell fate in response to diverse forms of age-related damage and stress that has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The associations between circulating levels of candidate senescence biomarkers and disease outcomes have not been specifically studied in IPF. In this study we assessed the circulating levels of candidate senescence biomarkers in individuals affected by IPF and controls and evaluated their ability to predict disease outcomes. METHODS: We measured the plasma concentrations of 32 proteins associated with senescence in Lung Tissue Research Consortium participants and studied their relationship with the diagnosis of IPF, parameters of pulmonary and physical function, health-related quality of life, mortality, and lung tissue expression of P16, a prototypical marker of cellular senescence. A machine learning approach was used to evaluate the ability of combinatorial biomarker signatures to predict disease outcomes. RESULTS: The circulating levels of several senescence biomarkers were significantly elevated in persons affected by IPF compared to controls. A subset of biomarkers accurately classified participants as having or not having the disease and was significantly correlated with measures of pulmonary function, health-related quality of life and, to an extent, physical function. An exploratory analysis revealed senescence biomarkers were also associated with mortality in IPF participants. Finally, the plasma concentrations of several biomarkers were associated with their expression levels in lung tissue as well as the expression of P16. CONCLUSIONS: Our results suggest that circulating levels of candidate senescence biomarkers are informative of disease status, pulmonary and physical function, and health-related quality of life. Additional studies are needed to validate the combinatorial biomarkers signatures that emerged using a machine learning approach.
Assuntos
Fibrose Pulmonar Idiopática , Qualidade de Vida , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Senescência Celular , Pulmão/metabolismo , Biomarcadores/metabolismoRESUMO
Recent work has established associations between elevated p21, the accumulation of senescent cells, and skeletal muscle dysfunction in mice and humans. Using a mouse model of p21 overexpression (p21OE), we examined if p21 mechanistically contributes to cellular senescence and pathological features in skeletal muscle. We show that p21 induces several core properties of cellular senescence in skeletal muscle, including an altered transcriptome, DNA damage, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). Furthermore, p21OE mice exhibit manifestations of skeletal muscle pathology, such as atrophy, fibrosis, and impaired physical function when compared to age-matched controls. These findings suggest p21 alone is sufficient to drive a cellular senescence program and reveal a novel source of skeletal muscle loss and dysfunction.
Assuntos
Senescência Celular , Músculo Esquelético , Humanos , Senescência Celular/fisiologiaRESUMO
Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance (Klebsiella pneumoniae CTX-M-14 ß-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required.
RESUMO
Cellular senescence is a plausible mediator of age-associated declines in physical performance. To test this premise, we examined cross-sectional associations between circulating components of the senescence-associated secretory phenotype (SASP) and measures of physical function and muscle strength in 1377 older adults. We showed significant associations between multiple SASP proteins and the short physical performance battery (SPPB), its subcomponents (gait speed, balance, chair rise time), and 400-m walk time. Activin A, ICAM1, MMP7, VEGFA, and eotaxin showed strong associations based on gradient boost machine learning (GBM), and, when combined with other proteins, effectively identified participants at the greatest risk for mobility disability (SPPB score [Formula: see text] 7). Senescence biomarkers were also associated with lower grip strength, and GBM identified PARC, ADAMTS13, and RANTES as top candidates in females, and MMP2, SOST, and MCP1 in males. These findings highlight an association between senescence biomarkers and physical performance in older adults. ClinicalTrials.gov Identifier: NCT01072500.
Assuntos
Estilo de Vida , Força Muscular , Masculino , Feminino , Humanos , Idoso , Estudos Transversais , Força Muscular/fisiologia , Senescência Celular , BiomarcadoresRESUMO
Senescence is a cell fate that contributes to multiple aging-related pathologies. Despite profound age-associated changes in skeletal muscle (SkM), whether its constituent cells are prone to senesce has not been methodically examined. Herein, using single cell and bulk RNA-sequencing and complementary imaging methods on SkM of young and old mice, we demonstrate that a subpopulation of old fibroadipogenic progenitors highly expresses p16 Ink4a together with multiple senescence-related genes and, concomitantly, exhibits DNA damage and chromatin reorganization. Through analysis of isolated myofibers, we also detail a senescence phenotype within a subset of old cells, governed instead by p2 Cip1 . Administration of a senotherapeutic intervention to old mice countered age-related molecular and morphological changes and improved SkM strength. Finally, we found that the senescence phenotype is conserved in SkM from older humans. Collectively, our data provide compelling evidence for cellular senescence as a hallmark and potentially tractable mediator of SkM aging.
Assuntos
Envelhecimento , Senescência Celular , Humanos , Camundongos , Animais , Envelhecimento/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fenótipo , Músculo EsqueléticoRESUMO
Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.
Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Rejuvenescimento , Envelhecimento , Animais , Encéfalo/metabolismo , Senescência Celular/fisiologia , Fatores Quimiotáticos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Masculino , CamundongosRESUMO
We propose the beneficial effects of exercise are in part mediated through the prevention and elimination of senescent cells. Exercise counters multiple forms of age-related molecular damage that initiate the senescence program and activates immune cells responsible for senescent cell clearance. Preclinical and clinical evidence for exercise as a senescence-targeting therapy and areas needing further investigation are discussed.
Assuntos
Envelhecimento , Senescência Celular , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Exercício Físico , HumanosRESUMO
The natural host ranges of many viruses are restricted to very specific taxa. Little is known about the molecular barriers between species that lead to the establishment of this restriction or generally prevent virus emergence in new hosts. Here, we identify genomic polymorphisms in a natural rodent host associated with a strong genetic barrier to the transmission of European Tula orthohantavirus (TULV). We analysed the very abrupt spatial transition between two major phylogenetic clades in TULV across the comparatively much wider natural hybrid zone between evolutionary lineages of their reservoir host, the common vole (Microtus arvalis). Genomic scans of 79,225 single nucleotide polymorphisms (SNPs) in 323 TULV-infected host individuals detected 30 SNPs that were consistently associated with the TULV clades CEN.S or EST.S in two replicate sampling transects. Focusing the analysis on 199 voles with evidence of genomic admixture at the individual level (0.1-0.9) supported statistical significance for all 30 loci. Host genomic variation at these SNPs explained up to 37.6% of clade-specific TULV infections. Genes in the vicinity of associated SNPs include SAHH, ITCH and two members of the Syngr gene family, which are involved in functions related to immune response or membrane transport. This study demonstrates the relevance of natural hybrid zones as systems not only for studying processes of evolutionary divergence and speciation, but also for the detection of evolving genetic barriers for specialized parasites.
Assuntos
Infecções por Hantavirus , Orthohantavírus , Vírus de RNA , Animais , Arvicolinae/genética , FilogeniaRESUMO
Social desirability reporting leads to over estimations of church attendance. To date, researchers have treated over-reporting of church attendance as a general phenomenon, and have been unable to determine the demographic correlates of inaccuracy in these self-reports. By comparing over eight months of observational data on church attendance (n = 48 services) to self-report in a rural Fijian village, we find that 1) self-report does not reliably predict observed attendance, 2) women with two or more children (≥ 2) are more likely to over-report their attendance than women with fewer children (≤ 1), and 3) self-report of religiosity more reliably predicts observed church attendance than does self-report of church attendance. Further, we find that third-party judgements of church attendance by fellow villagers are more reliably associated with observed church attendance than self-report. Our findings suggest that researchers interested in estimating behavioral variation, particularly in domains susceptible to social desirability effects, should consider developing and employing third-party methods to mitigate biases inherent to self-report.