RESUMO
Wood Ducks (Aix sponsa) are secondary cavity nesters that use natural cavities and artificial nest boxes, the latter of which has been attributed to the recovery of populations across the southeastern US. Continual use of these boxes results in a buildup of bacteria, parasites, and other pathogens. To avoid the accumulation of these deleterious organisms, best management practices include the occasional removal of old nesting material (i.e., wood shavings) and replacement with fresh wood shavings. No studies have been performed on the effects of shaving material on nest box selection, nest success, and bacterial growth. We monitored 142 and 111 nest boxes in Florida and Georgia, USA, respectively, and filled a random sample with aspen or cedar shavings. We then swabbed the surface of 144 and 150 eggs during 2020 and 2021, respectively, to screen for culturable bacteria. We detected no effect of shaving type on nest box selection, nest success, or egg surface bacterial growth. We found 3-8 bacterial colony types (1-123 colony-forming units [CFU]/box) and 1-8 bacterial colony types (3-382 CFU/box) among the Georgia and Florida samples, respectively. We detected no effect from shaving type on Wood Duck reproduction or bacterial growth in the sampled nest boxes. We concluded that both shaving types are suitable nesting materials for box-nesting Wood Duck populations and the continued use of either would be a reasonable decision for managers.
Assuntos
Patos , Comportamento de Nidação , Reprodução , Animais , Patos/microbiologia , Reprodução/fisiologia , Bactérias/isolamento & purificação , Casca de Ovo/microbiologia , Florida , Georgia , Madeira/microbiologia , FemininoRESUMO
The α-amylase, SusG, is a principal component of the Bacteroides thetaiotaomicron (Bt) starch utilization system (Sus) used to metabolize complex starch molecules in the human gastrointestinal (GI) tract. We previously reported the non-microbicidal growth inhibition of Bt by the acarbose-mediated arrest of the Sus as a potential therapeutic strategy. Herein, we report a computational approach using density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulation to explore the interactive mechanism between acarbose and SusG at the atomic level in an effort to understand how acarbose shuts down the Bt Sus. The docking analysis reveals that acarbose binds orthosterically to SusG with a binding affinity of -8.3 kcal/mol. The MD simulation provides evidence of conformational variability of acarbose at the active site of SusG and also suggests that acarbose interacts with the main catalytic residues via a general acid-base double-displacement catalytic mechanism. These results suggest that small molecule competitive inhibition against the SusG protein could impact the entire Bt Sus and eliminate or reduce the system's ability to metabolize starch. This computational strategy could serve as a potential avenue for structure-based drug design to discover other small molecules capable of inhibiting the Sus of Bt with high potency, thus providing a holistic approach for selective modulation of the GI microbiota.
Assuntos
Bacteroides thetaiotaomicron , Amido , Humanos , Amido/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Amilases/metabolismo , Acarbose/farmacologia , Simulação de Acoplamento MolecularRESUMO
We describe the inhibition of the starch utilization system (Sus) belonging to various strains of Bacteroides dorei in a non-lethal manner using the small molecule probe, acarbose. Concentrations of acarbose as low as 5 µM significantly impede the growth of B. dorei and increase the doubling time of cultures. The successful inhibition of this species of Bacteroides is relevant to several disease states including type I diabetes mellitus. This method continues to explore a new, potential route to intervene in illnesses associated with aberrant changes in the composition of the human gut microbiota through the strategic manipulation of its constituents.
RESUMO
BACKGROUND: Adherent and invasive Escherichia coli (AIEC) is preferentially associated with ileal Crohn's disease (CD). The role of AIEC in the development of inflammation and its regional tropism is unresolved. The presence of long polar fimbriae (LPF) in 71% of ileal CD AIEC suggests a role for LPF in the tropism and virulence of AIEC. The aim of our study is to determine if AIEC, with or without LpfA, induces intestinal inflammation in monoassociated IL-10-/- mice. METHODS: We compared murine AIEC strains NC101 (phylogroup B2, LpfA-) and CUMT8 (phylogroup B1, LpfA+), and isogenic mutant CUMT8 lacking lpfA154, with a non-AIEC (E. coli K12), evaluating histologic inflammation, bacterial colonization, mucosal adherence and invasion, and immune activation. RESULTS: IL-10-/- mice monoassociated with AIEC (either CUMT8, CUMT8:ΔlpfA, or NC101) but not K12 developed diffuse small intestinal and colonic inflammation. There was no difference in the magnitude and distribution of inflammation in mice colonized with CUMT8:ΔlpfA compared with wild-type CUMT8. Bacterial colonization was similar for all E. coli strains. Fluorescence in situ hybridization revealed mucosal adherence and tissue invasion by AIEC but not K12. Production of the cytokines IL-12/23 p40 by the intestinal tissue and IFN-γ and IL-17 by CD4 T cells correlated with inflammation. CONCLUSIONS: IL-10-/- mice monoassociated with murine AIEC irrespective of LpfA expression developed chronic inflammation accompanied by IL-12/23 p40 production in the small and large intestines and IFN-γ/IL-17 production by CD4 T cells that model the interplay between enteric pathosymbionts, host susceptibility, and enhanced immune responses in people with IBD.
Assuntos
Aderência Bacteriana , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Inflamação/etiologia , Interleucina-10/fisiologia , Intestino Grosso/imunologia , Intestino Delgado/imunologia , Animais , Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Fímbrias Bacterianas/imunologia , Fímbrias Bacterianas/patologia , Inflamação/metabolismo , Inflamação/patologia , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Intestino Grosso/patologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Camundongos , Camundongos KnockoutRESUMO
A new approach for the nonmicrobicidal phenotypic manipulation of prominent gastrointestinal microbes is presented. Low micromolar concentrations of a chemical probe, acarbose, can selectively inhibit the Starch Utilization System and ablate the ability of Bacteroides thetaiotaomicron and B. fragilis strains to metabolize potato starch and pullulan. This strategy has potential therapeutic relevance for the selective modulation of the GI microbiota in a nonmicrobicidal manner.