Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6651): 1275-1281, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347863

RESUMO

Growth coordination between cell layers is essential for development of most multicellular organisms. Coordination may be mediated by molecular signaling and/or mechanical connectivity between cells, but how genes modify mechanical interactions between layers is unknown. Here we show that genes driving brassinosteroid synthesis promote growth of internal tissue, at least in part, by reducing mechanical epidermal constraint. We identified a brassinosteroid-deficient dwarf mutant in the aquatic plant Utricularia gibba with twisted internal tissue, likely caused by mechanical constraint from a slow-growing epidermis. We tested this hypothesis by showing that a brassinosteroid mutant in Arabidopsis enhances epidermal crack formation, indicative of increased tissue stress. We propose that by remodeling cell walls, brassinosteroids reduce epidermal constraint, showing how genes can control growth coordination between layers by means of mechanics.


Assuntos
Brassinosteroides , Lamiales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Comunicação Celular , Parede Celular/metabolismo , Lamiales/citologia , Lamiales/genética , Lamiales/metabolismo , Epiderme Vegetal/metabolismo
2.
PLoS Biol ; 19(12): e3001475, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871299

RESUMO

Plants use energy from sunlight to transform carbon dioxide from the air into complex organic molecules, ultimately producing much of the food we eat. To make this complex chemistry more efficient, plant leaves are intricately constructed in 3 dimensions: They are flat to maximise light capture and contain extensive internal air spaces to increase gas exchange for photosynthesis. Many years of work has built up an understanding of how leaves form flat blades, but the molecular mechanisms that control air space formation are poorly understood. Here, I review our current understanding of air space formation and outline how recent advances can be harnessed to answer key questions and take the field forward. Increasing our understanding of plant air spaces will not only allow us to understand a fundamental aspect of plant development, but also unlock the potential to engineer the internal structure of crops to make them more efficient at photosynthesis with lower water requirements and more resilient in the face of a changing environment.


Assuntos
Espaço Extracelular/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Ar , Dióxido de Carbono/metabolismo , Produtos Agrícolas , Espaço Extracelular/química , Fotossíntese/fisiologia , Luz Solar
3.
Science ; 367(6473): 91-96, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31753850

RESUMO

Leaves vary from planar sheets and needle-like structures to elaborate cup-shaped traps. Here, we show that in the carnivorous plant Utricularia gibba, the upper leaf (adaxial) domain is restricted to a small region of the primordium that gives rise to the trap's inner layer. This restriction is necessary for trap formation, because ectopic adaxial activity at early stages gives radialized leaves and no traps. We present a model that accounts for the formation of both planar and nonplanar leaves through adaxial-abaxial domains of gene activity establishing a polarity field that orients growth. In combination with an orthogonal proximodistal polarity field, this system can generate diverse leaf forms and account for the multiple evolutionary origins of cup-shaped leaves through simple shifts in gene expression.


Assuntos
Evolução Biológica , Lamiales/anatomia & histologia , Lamiales/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Expressão Gênica , Lamiales/genética , Folhas de Planta/genética
4.
Curr Biol ; 27(17): R910-R918, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898664

RESUMO

Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve.


Assuntos
Evolução Biológica , Morfogênese/genética , Desenvolvimento Vegetal/genética , Fenômenos Biomecânicos , Lamiales/genética , Lamiales/crescimento & desenvolvimento , Lamiales/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA