Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(2): e16112, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478327

RESUMO

PREMISE: Phenological variation among individuals within populations is common and has a variety of ecological and evolutionary consequences, including forming the basis for population-level responses to environmental change. Although the timing of life-cycle events has genetic underpinnings, whether intraspecific variation in the duration of life-cycle events reflects genetic differences among individuals is poorly understood. METHODS: We used a common garden experiment with 10 genotypes of Salix hookeriana (coastal willow) from northern California, United States to investigate the extent to which genetic variation explains intraspecific variation in the timing and duration of multiple, sequential life-cycle events: flowering, leaf budbreak, leaf expansion, fruiting, and fall leaf coloration. We used seven clones of each genotype, for a total of 70 individual trees. RESULTS: Genotype affected each sequential life-cycle event independently and explained on average 62% of the variation in the timing and duration of vegetative and reproductive life-cycle events. All events were significantly heritable. A single genotype tended to be "early" or "late" across life-cycle events, but for event durations, there was no consistent response within genotypes. CONCLUSIONS: This research demonstrates that genetic variation can be a major component underlying intraspecific variation in the timing and duration of life-cycle events. It is often assumed that the environment affects durations, but we show that genetic factors also play a role. Because the timing and duration of events are independent of one another, our results suggest that the effects of environmental change on one event will not necessarily cascade to subsequent events.


Assuntos
Salix , Animais , Estações do Ano , Salix/fisiologia , Estágios do Ciclo de Vida , Folhas de Planta , Genótipo
2.
J Anat ; 240(3): 466-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34648184

RESUMO

Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade-off between jump distance and acceleration as body size changes at both the inter- and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross-sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomys spp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40-150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free-ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross-sectional area scaled with positive allometry. Ankle extensor tendon cross-sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single-strike predators, such as snakes and owls, likely drives this relationship.


Assuntos
Dipodomys , Músculo Esquelético , Animais , Articulação do Tornozelo/fisiologia , Dipodomys/fisiologia , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Tendões/anatomia & histologia
3.
J Evol Biol ; 34(9): 1447-1465, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34322920

RESUMO

Predator-prey interactions often lead to the coevolution of adaptations associated with avoiding predation and, for predators, overcoming those defences. Antagonistic coevolutionary relationships are often not simple interactions between a single predator and prey but rather a complex web of interactions between multiple coexisting species. Coevolution between venomous rattlesnakes and small mammals has led to physiological venom resistance in several mammalian taxa. In general, viperid venoms contain large quantities of snake venom metalloproteinase toxins (SVMPs), which are inactivated by SVMP inhibitors expressed in resistant mammals. We explored variation in venom chemistry, SVMP expression, and SVMP resistance across four co-distributed species (California Ground Squirrels, Bryant's Woodrats, Southern Pacific Rattlesnakes, and Red Diamond Rattlesnakes) collected from four different populations in Southern California. Our aim was to understand phenotypic and functional variation in venom and venom resistance in order to compare coevolutionary dynamics of a system involving two sympatric predator-prey pairs to past studies that have focused on single pairs. Proteomic analysis of venoms indicated that these rattlesnakes express different phenotypes when in sympatry, with Red Diamonds expressing more typical viperid venom (with a diversity of SVMPs) and Southern Pacifics expressing a more atypical venom with a broader range of non-enzymatic toxins. We also found that although blood sera from both mammals were generally able to inhibit SVMPs from both rattlesnake species, inhibition depended strongly on the snake population, with snakes from one geographic site expressing SVMPs to which few mammals were resistant. Additionally, we found that Red Diamond venom, rather than woodrat resistance, was locally adapted. Our findings highlight the complexity of coevolutionary relationships between multiple predators and prey that exhibit similar offensive and defensive strategies in sympatry.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Fenótipo , Proteômica , Simpatria
4.
J Exp Biol ; 223(Pt 14)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32561628

RESUMO

Movements of ectotherms are constrained by their body temperature owing to the effects of temperature on muscle physiology. As physical performance often affects the outcome of predator-prey interactions, environmental temperature can influence the ability of ectotherms to capture prey and/or defend themselves against predators. However, previous research on the kinematics of ectotherms suggests that some species may use elastic storage mechanisms when attacking or defending, thereby mitigating the effects of sub-optimal temperature. Rattlesnakes (Crotalus spp.) are a speciose group of ectothermic viperid snakes that rely on crypsis, rattling and striking to deter predators. We examined the influence of body temperature on the behavior and kinematics of two rattlesnake species (Crotalus oreganus helleri and Crotalus scutulatus) when defensively striking towards a threatening stimulus. We recorded defensive strikes at body temperatures ranging from 15-35°C. We found that strike speed and speed of mouth gaping during the strike were positively correlated with temperature. We also found a marginal effect of temperature on the probability of striking, latency to strike and strike outcome. Overall, warmer snakes are more likely to strike, strike faster, open their mouth faster and reach maximum gape earlier than colder snakes. However, the effects of temperature were less than would be expected for purely muscle-driven movements. Our results suggest that, although rattlesnakes are at a greater risk of predation at colder body temperatures, their decrease in strike performance may be mitigated to some extent by employing mechanisms in addition to skeletal muscle contraction (e.g. elastic energy storage) to power strikes.


Assuntos
Temperatura Corporal , Crotalus , Comportamento Predatório , Animais , Temperatura Baixa , Temperatura
5.
Sci Rep ; 7: 40412, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084400

RESUMO

Predation plays a central role in the lives of most organisms. Predators must find and subdue prey to survive and reproduce, whereas prey must avoid predators to do the same. The resultant antagonistic coevolution often leads to extreme adaptations in both parties. Few examples capture the imagination like a rapid strike from a venomous snake. However, almost nothing is known about strike performance of viperid snakes under natural conditions. We obtained high-speed (500 fps) three-dimensional video in the field (at night using infrared lights) of Mohave rattlesnakes (Crotalus scutulatus) attempting to capture Merriam's kangaroo rats (Dipodomys merriami). Strikes occurred from a range of distances (4.6 to 20.6 cm), and rattlesnake performance was highly variable. Missed capture attempts resulted from both rapid escape maneuvers and poor strike accuracy. Maximum velocity and acceleration of some rattlesnake strikes fell within the range of reported laboratory values, but some far exceeded most observations. Thus, quantifying rapid predator-prey interactions in the wild will propel our understanding of animal performance.


Assuntos
Crotalus/fisiologia , Dipodomys/fisiologia , Imageamento Tridimensional/métodos , Gravação em Vídeo/métodos , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Comportamento Predatório/fisiologia
6.
Zoology (Jena) ; 119(3): 196-206, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26997261

RESUMO

Predators often employ a complex series of behaviors to overcome antipredator defenses and effectively capture prey. Although hunting behaviors can improve with age and experience, many precocial species are necessarily effective predators from birth. Additionally, many predators experience innate ontogenetic shifts in predatory strategies as they grow, allowing them to adapt to prey more appropriate for their increased size and energetic needs. Understanding how the relative roles of innate age-specific adaptation and learning have evolved requires information on how predation behavior develops in situ, in free-ranging predators. However, most of the research on the ontogeny of predation behavior is based on laboratory studies of captive animals, largely due to the difficulty of following newborn individuals in nature. Here, we take advantage of the unique tracks left by juveniles of a precocial viperid, the sidewinder rattlesnake (Crotalus cerastes), which we used to follow free-ranging snakes in the field. We recorded details of their ambush hunting behavior, and compared the behaviors of these juveniles to adult snakes that we monitored in the field via radio telemetry. Although juvenile and adult behaviors were similar in most respects, we did find that adults chose more effective ambush sites, which may be due to their increased experience. We also found that juveniles (but typically not adults) perform periodic tail undulations while in ambush, and that juveniles displayed slightly different activity cycles. Both of these latter differences are likely the result of age-specific adaptations for juveniles' greater reliance on lizards versus small mammals as prey. We also compared the general predatory behavior of sidewinders to that of other species in the genus Crotalus. These findings will provide important baseline field information for more detailed empirical research on the ontogeny of predation behavior in precocial vertebrates.


Assuntos
Crotalus/fisiologia , Periodicidade , Comportamento Predatório/fisiologia , Envelhecimento/fisiologia , Animais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA