Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(1): e0170464, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28114311

RESUMO

Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF ß-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development.


Assuntos
Sinapses/enzimologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/enzimologia , Ratos
2.
J Cell Biol ; 210(2): 225-42, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26169356

RESUMO

RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front-back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front-back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines.


Assuntos
Sinapses/enzimologia , Quinases Associadas a rho/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Actomiosina/metabolismo , Actomiosina/ultraestrutura , Animais , Células CHO , Adesão Celular , Movimento Celular , Polaridade Celular , Cricetinae , Cricetulus , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/ultraestrutura , Humanos , Camundongos , Transporte Proteico , Ratos , Sinapses/ultraestrutura
3.
J Cell Biol ; 209(1): 23-32, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25869664

RESUMO

In this study, we show that the role of nonmuscle myosin II (NMII)-B in front-back migratory cell polarity is controlled by a short stretch of amino acids containing five serines (1935-1941). This motif resides near the junction between the C terminus helical and nonhelical tail domains. Removal of this motif inhibited NMII-B assembly, whereas its insertion into NMII-A endowed an NMII-B-like ability to generate large actomyosin bundles that determine the rear of the cell. Phosphomimetic mutation of the five serines also inhibited NMII-B assembly, rendering it unable to support front-back polarization. Mass spectrometric analysis showed that several of these serines are phosphorylated in live cells. Single-site mutagenesis showed that serine 1935 is a major regulatory site of NMII-B function. These data reveal a novel regulatory mechanism of NMII in polarized migrating cells by identifying a key molecular determinant that confers NMII isoform functional specificity.


Assuntos
Polaridade Celular , Cadeias Pesadas de Miosina/fisiologia , Miosina não Muscular Tipo IIB/fisiologia , Actomiosina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Adesão Celular , Movimento Celular , Cricetinae , Cricetulus , Células HEK293 , Humanos , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Miosina não Muscular Tipo IIB/química , Estabilidade Proteica , Estrutura Terciária de Proteína
4.
PLoS One ; 9(7): e101770, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25007055

RESUMO

Dendritic spines are micron-sized protrusions that constitute the primary post-synaptic sites of excitatory neurotransmission in the brain. Spines mature from a filopodia-like protrusion into a mushroom-shaped morphology with a post-synaptic density (PSD) at its tip. Modulation of the actin cytoskeleton drives these morphological changes as well as the spine dynamics that underlie learning and memory. Several PSD molecules respond to glutamate receptor activation and relay signals to the underlying actin cytoskeleton to regulate the structural changes in spine and PSD morphology. α-Actinin-2 is an actin filament cross-linker, which localizes to dendritic spines, enriched within the post-synaptic density, and implicated in actin organization. We show that loss of α-actinin-2 in rat hippocampal neurons creates an increased density of immature, filopodia-like protrusions that fail to mature into a mushroom-shaped spine during development. α-Actinin-2 knockdown also prevents the recruitment and stabilization of the PSD in the spine, resulting in failure of synapse formation, and an inability to structurally respond to chemical stimulation of the N-methyl-D-aspartate (NMDA)-type glutamate receptor. The Ca2+-insensitive EF-hand motif in α-actinin-2 is necessary for the molecule's function in regulating spine morphology and PSD assembly, since exchanging it for the similar but Ca2+-sensitive domain from α-actinin-4, another α-actinin isoform, inhibits its function. Furthermore, when the Ca2+-insensitive domain from α-actinin-2 is inserted into α-actinin-4 and expressed in neurons, it creates mature spines. These observations support a model whereby α-actinin-2, partially through its Ca2+-insensitive EF-hand motif, nucleates PSD formation via F-actin organization and modulates spine maturation to mediate synaptogenesis.


Assuntos
Actinina/fisiologia , Espinhas Dendríticas/metabolismo , Hipocampo/citologia , Motivos de Aminoácidos , Animais , Células Cultivadas , Espinhas Dendríticas/ultraestrutura , Transporte Proteico , Ratos
5.
J Cell Biol ; 193(2): 381-96, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21482721

RESUMO

Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like ßPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.


Assuntos
Movimento Celular , Polaridade Celular , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Células CHO , Moléculas de Adesão Celular/metabolismo , Movimento Celular/fisiologia , Cricetinae , Cricetulus , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosforilação , Ligação Proteica
6.
J Cell Biol ; 183(3): 543-54, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18955554

RESUMO

We have found that MLC-dependent activation of myosin IIB in migrating cells is required to form an extended rear, which coincides with increased directional migration. Activated myosin IIB localizes prominently at the cell rear and produces large, stable actin filament bundles and adhesions, which locally inhibit protrusion and define the morphology of the tail. Myosin IIA forms de novo filaments away from the myosin IIB-enriched center and back to form regions that support protrusion. The positioning and dynamics of myosin IIA and IIB depend on the self-assembly regions in their coiled-coil C terminus. COS7 and B16 melanoma cells lack myosin IIA and IIB, respectively; and show isoform-specific front-back polarity in migrating cells. These studies demonstrate the role of MLC activation and myosin isoforms in creating a cell rear, the segregation of isoforms during filament assembly and their differential effects on adhesion and protrusion, and a key role for the noncontractile region of the isoforms in determining their localization and function.


Assuntos
Actomiosina/fisiologia , Movimento Celular/fisiologia , Miosina não Muscular Tipo IIB/fisiologia , Animais , Células CHO , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Cricetulus , Haplorrinos , Humanos , Melanoma , Cadeias Leves de Miosina/fisiologia , Miosina não Muscular Tipo IIA/fisiologia , Miosina não Muscular Tipo IIB/isolamento & purificação , Fosforilação
7.
Nat Cell Biol ; 10(9): 1039-50, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19160484

RESUMO

Using two-colour imaging and high resolution TIRF microscopy, we investigated the assembly and maturation of nascent adhesions in migrating cells. We show that nascent adhesions assemble and are stable within the lamellipodium. The assembly is independent of myosin II but its rate is proportional to the protrusion rate and requires actin polymerization. At the lamellipodium back, the nascent adhesions either disassemble or mature through growth and elongation. Maturation occurs along an alpha-actinin-actin template that elongates centripetally from nascent adhesions. Alpha-Actinin mediates the formation of the template and organization of adhesions associated with actin filaments, suggesting that actin crosslinking has a major role in this process. Adhesion maturation also requires myosin II. Rescue of a myosin IIA knockdown with an actin-bound but motor-inhibited mutant of myosin IIA shows that the actin crosslinking function of myosin II mediates initial adhesion maturation. From these studies, we have developed a model for adhesion assembly that clarifies the relative contributions of myosin II and actin polymerization and organization.


Assuntos
Actinina/metabolismo , Actinas/metabolismo , Animais , Células CHO , Adesão Celular , Polaridade Celular , Cricetinae , Cricetulus , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Modelos Biológicos , Miosina não Muscular Tipo IIA/metabolismo , Pseudópodes/metabolismo , Ratos
8.
J Cell Biol ; 176(5): 573-80, 2007 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-17312025

RESUMO

We have used isoform-specific RNA interference knockdowns to investigate the roles of myosin IIA (MIIA) and MIIB in the component processes that drive cell migration. Both isoforms reside outside of protrusions and act at a distance to regulate cell protrusion, signaling, and maturation of nascent adhesions. MIIA also controls the dynamics and size of adhesions in central regions of the cell and contributes to retraction and adhesion disassembly at the rear. In contrast, MIIB establishes front-back polarity and centrosome, Golgi, and nuclear orientation. Using ATPase- and contraction-deficient mutants of both MIIA and MIIB, we show a role for MIIB-dependent actin cross-linking in establishing front-back polarity. From these studies, MII emerges as a master regulator and integrator of cell migration. It mediates each of the major component processes that drive migration, e.g., polarization, protrusion, adhesion assembly and turnover, polarity, signaling, and tail retraction, and it integrates spatially separated processes.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular , Miosina não Muscular Tipo IIA/fisiologia , Miosina não Muscular Tipo IIB/fisiologia , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células CHO , Adesão Celular/fisiologia , Cricetinae , Cricetulus , Miosina não Muscular Tipo IIA/antagonistas & inibidores , Miosina não Muscular Tipo IIB/antagonistas & inibidores , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/fisiologia , Interferência de RNA , Ratos , Transdução de Sinais
9.
J Cell Sci ; 119(Pt 24): 5204-14, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17158922

RESUMO

Cell migration is regulated in part by the connection between the substratum and the actin cytoskeleton. However, the very large number of proteins involved in this linkage and their complex network of interactions make it difficult to assess their role in cell migration. We apply a novel image analysis tool, spatio-temporal image correlation spectroscopy (STICS), to quantify the directed movements of adhesion-related proteins and actin in protrusions of migrating cells. The STICS technique reveals protein dynamics even when protein densities are very low or very high, and works in the presence of large, static molecular complexes. Detailed protein velocity maps for actin and the adhesion-related proteins alpha-actinin, alpha5-integrin, talin, paxillin, vinculin and focal adhesion kinase are presented. The data show that there are differences in the efficiency of the linkage between integrin and actin among different cell types and on the same cell type grown on different substrate densities. We identify potential mechanisms that regulate efficiency of the linkage, or clutch, and identify two likely points of disconnect, one at the integrin and the other at alpha-actinin or actin. The data suggests that the efficiency of the linkage increases as actin and adhesions become more organized showing the importance of factors that regulate the efficiency in adhesion signaling and dynamics.


Assuntos
Actinas/metabolismo , Integrinas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Células 3T3 , Actinas/genética , Algoritmos , Animais , Células CHO , Adesão Celular/genética , Adesão Celular/fisiologia , Células Cultivadas , Cricetinae , Cricetulus , Citoplasma/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Integrinas/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Modelos Biológicos , Mapeamento de Interação de Proteínas/instrumentação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Proteína Vermelha Fluorescente
10.
J Proteome Res ; 5(9): 2417-23, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16944954

RESUMO

The process of cell motility involves coordinate signaling events among proteins associated in interactive integrin-linked networks. Mass spectrometric analysis of immunoprecipitation-derived protein mixtures have provided efficient means of identifying proteomes. In this study, we investigate strategies to enhance the detection of interactome proteins for the known signaling module: PAK1, betaPIX, GIT1, and paxillin. Our results indicate that near-endogenous expression levels of bait protein enhances the identification of associated proteins, and that phosphatase inhibition augments the detection of specific protein interactions. Following the analysis of a large pool of spectral data, we have identified and mapped clusters of proteins that either share common interactions among the four bait proteins of interest or are exclusive to single bait proteins. Taken together, these data indicate that biochemical manipulations can enhance the ability for LC-MS/MS to identify interactome proteins, and that qualitative screening of multiple samples leads to the compilation of proteins associated with a known plexus.


Assuntos
Movimento Celular/genética , Proteínas/análise , Proteômica/métodos , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatografia Líquida/métodos , Humanos , Imunoprecipitação , Espectrometria de Massas/métodos , Paxilina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Ativadas por p21
12.
Biochem Biophys Res Commun ; 346(4): 1284-8, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16797488

RESUMO

G protein-coupled receptor kinase-interacting protein (GIT)1 is a multidomain, adaptor protein that regulates cellular processes, such as migration and protrusive activity, by bringing together various signaling molecules, including PIX, PAK, and paxillin. Mutants of GIT1, which lack the C-terminal paxillin binding domain, fail to mediate its effects on migration and protrusions, suggesting that sites within this domain are critical to GIT1 function. In this study, we show that serine 709, which is located within the paxillin binding domain, regulates GIT1 function. Phosphorylation of serine 709 is necessary for GIT1-induced effects on protrusions. Phosphorylation of this site also regulates GIT1 interaction with paxillin, which could serve to target GIT1 to the leading edge of cells. As shown by an in vitro kinase assay, PAK phosphorylates GIT1 on serine 709. Taken together, our results indicate that GIT1 phosphorylation on serine 709 increases its binding to paxillin and regulates protrusive activity in cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/fisiologia , Extensões da Superfície Celular/fisiologia , Serina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Células CHO , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Cricetinae , Humanos , Paxilina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Ativadas por p21
14.
Nat Cell Biol ; 6(2): 154-61, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14743221

RESUMO

Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.


Assuntos
Adesão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Movimento Celular/fisiologia , Proteína Substrato Associada a Crk , Proteínas do Citoesqueleto/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Quinase de Cadeia Leve de Miosina/genética , Paxilina , Fosfoproteínas/genética , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína p130 Retinoblastoma-Like , Quinases da Família src/genética
15.
Curr Biol ; 12(22): 1946-51, 2002 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-12445389

RESUMO

Microtubules play critical roles in a variety of cell processes, including mitosis, organelle transport, adhesion and migration, and the maintenance of cell polarity. Microtubule-associated proteins (MAPs) regulate the dynamic organization and stability of microtubules, often through either cell-specific or cell division stage-specific interactions. To identify novel cytoskeletal-associated proteins and peptides that regulate microtubules and other cytoskeletal and adhesive structures, we have developed a GFP cDNA screening strategy based on identifying gene products that localize to these structures. Using this approach, we have identified a novel MAP, GLFND, that shows homology to the Opitz syndrome gene product [6], localizes to a subpopulation of microtubules that are acetylated, and protects microtubules from depolymerization with nocodazole. Expression of an N-terminal deletion binds microtubules but alters their organization. During the cell cycle, GLFND dissociates from microtubules at the beginning of mitosis and then reassociates at cytokinesis. Furthermore, ectopic expression of GLFND inhibits cell division and cytokinesis in CHO cells. These observations make GLFND unique among MAPs characterized thus far.


Assuntos
Divisão Celular/fisiologia , Proteínas Luminescentes/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Células CHO , Cricetinae , DNA Complementar/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Transfecção , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA