Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Osteoporos Int ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847810

RESUMO

PURPOSE: Skeletal fluorosis (SF) results from chronic exposure to fluoride (F-) causing excessive aberrantly mineralized brittle bone tissue, fractures, and exostoses. There is no established treatment other than avoiding the source of F-. Still, excess F- can persist in bone for decades after exposure ceases. CASE PRESENTATION: A 50-year-old woman presented with multiple, recurrent, low AQ2 trauma fractures yet high radiologic bone mineral density. Serum F- was elevated, and osteomalacia was documented by non-decalcified transiliac biopsy. She reported intermittently "huffing" a keyboard cleaner containing F- (difluoroethane) for years. Following cessation of her F- exposure, we evaluated the administration of the parathyroid hormone analog, abaloparatide, hoping to increase bone remodeling and diminish her skeletal F- burden. CONCLUSION: Due to the prolonged half-life of F- in bone, SF can cause fracturing long after F- exposure stops. Anabolic therapy approved for osteoporosis, such as abaloparatide, may induce mineralized bone turnover to replace the poorly mineralized osteomalacic bone characteristic of SF and thereby diminish fracture risk. Following abaloparatide treatment for our patient, there was a decrease in bone density as well as a reduction in F- levels.

3.
JBMR Plus ; 8(1): ziad001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38690124

RESUMO

In a randomized, open-label phase 3 study of 61 children aged 1-12 years old with X-linked hypophosphatemia (XLH) previously treated with conventional therapy, changing to burosumab every 2 weeks (Q2W) for 64 weeks improved the phosphate metabolism, radiographic rickets, and growth compared with conventional therapy. In this open-label extension period (weeks 64-88), 21 children continued burosumab Q2W at the previous dose or crossed over from conventional therapy to burosumab starting at 0.8 mg/kg Q2W with continued clinical radiographic assessments through week 88. Efficacy endpoints and safety observations were summarized descriptively for both groups (burosumab continuation, n = 6; crossover, n = 15). At week 88 compared with baseline, improvements in the following outcomes were observed in the burosumab continuation and crossover groups, respectively: mean (SD) RGI-C rickets total score (primary outcome), +2.11 (0.27) and +1.89 (0.35); mean (SD) RGI-C lower limb deformity score, +1.61 (0.91) and +0.73 (0.82); and mean (SD) height Z-score + 0.41 (0.50) and +0.08 (0.34). Phosphate metabolism normalized rapidly in the crossover group and persisted in the continuation group. Mean (SD) serum alkaline phosphatase decreased from 169% (43%) of the upper limit of normal (ULN) at baseline to 126% (51%) at week 88 in the continuation group and from 157% (33%) of the ULN at baseline to 111% (23%) at week 88 in the crossover group. During the extension period, treatment-emergent adverse events (AEs) were reported in all 6 children in the burosumab continuation group and 14/15 children in the crossover group. The AE profiles in the randomized and extension periods were similar, with no new safety signals identified. Improvements from baseline in radiographic rickets continued in the extension period among children with XLH who remained on burosumab. Children who crossed over from conventional therapy to burosumab demonstrated a rapid improvement in phosphate metabolism and improved rickets healing over the ensuing 22 weeks.

4.
Bone ; 181: 117033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307176

RESUMO

Alkaline phosphatase (ALP) is detected in most human tissues. However, ALP activity is routinely assayed using high concentrations of artificial colorimetric substrates in phosphate-free laboratory buffers at lethal pH. Hypophosphatasia (HPP) is the inborn-error-of-metabolism caused by loss-of-function mutation(s) of the ALPL gene that encodes the ALP isoenzyme expressed in bone, liver, kidney, and elsewhere and is therefore designated "tissue-nonspecific" ALP (TNSALP). Consequently, HPP harbors clues concerning the biological function of this phosphohydrolase that is anchored onto the surface of cells. The biochemical signature of HPP features low serum ALP activity (hypophosphatasemia) together with elevated plasma levels of three natural substrates of TNSALP: i) phosphoethanolamine (PEA), a component of the linkage apparatus that binds ALPs and other proteins to the plasma membrane surface; ii) inorganic pyrophosphate (PPi), an inhibitor of bone and tooth mineralization; and iii) pyridoxal 5'-phosphate (PLP), the principal circulating vitameric form of vitamin B6 (B6). Autosomal dominant and autosomal recessive inheritance involving several hundred ALPL mutations underlies the remarkably broad-ranging expressivity of HPP featuring tooth loss often with muscle weakness and rickets or osteomalacia. Thus, HPP associates the "bone" isoform of TNSALP with biomineralization, whereas the physiological role of the "liver", "kidney", and other isoforms of TNSALP remains uncertain. Herein, to examine HPP's broad-ranging severity and the function of TNSALP, we administered an oral challenge of pyridoxine (PN) hydrochloride to 116 children with HPP. We assayed both pre- and post-challenge serum ALP activity and plasma levels of PLP, the B6 degradation product pyridoxic acid (PA), and the B6 vitamer pyridoxal (PL) that can enter cells. Responses were validated by PN challenge of 14 healthy adults and 19 children with metabolic bone diseases other than HPP. HPP severity was assessed using our HPP clinical nosology and patient height Z-scores. PN challenge of all study groups did not alter serum ALP activity in our clinical laboratory. In HPP, both the post-challenge PLP level and the PLP increment correlated (Ps < 0.0001) with the clinical nosology and height Z-scores (Rs = +0.6009 and + 0.4886, and Rs = -0.4846 and - 0.5002, respectively). In contrast, the plasma levels and increments of PA and PL from the PN challenge became less pronounced with HPP severity. We discuss how our findings suggest extraskeletal TNSALP primarily conditioned the PN challenge responses, and explain why they caution against overzealous B6 supplementation of HPP.


Assuntos
Hipofosfatasia , Adulto , Humanos , Criança , Hipofosfatasia/genética , Fosfatase Alcalina/metabolismo , Piridoxina , Vitamina B 6 , Piridoxal , Vitaminas
5.
6.
Bone ; 173: 116788, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172883

RESUMO

Osteopetrosis (OPT) denotes the consequences from failure of osteoclasts to resorb bone and chondroclasts to remove calcified physeal cartilage throughout growth. Resulting impairment of skeletal modeling, remodeling, and growth compromises widening of medullary spaces, formation of the skull, and expansion of cranial foramina. Thus, myelophthisic anemia, raised intracranial pressure, and cranial nerve palsies complicate OPT when severe. Osteopetrotic bones fracture due to misshaping, failure of remodeling to weave the collagenous matrix of cortical osteons and trabeculae, persistence of mineralized growth plate cartilage, "hardening" of hydroxyapatite crystals, and delayed healing of skeletal microcracks. Teeth may fail to erupt. Now it is widely appreciated that OPT is caused by germline loss-of-function mutation(s) usually of genes involved in osteoclast function, but especially rarely of genes necessary for osteoclast formation. Additionally, however, in 2003 we published a case report demonstrating that prolonged excessive dosing during childhood of the antiresorptive aminobisphosphonate pamidronate can sufficiently block osteoclast and chondroclast activity to recapitulate the skeletal features of OPT. Herein, we include further evidence of drug-induced OPT by illustrating osteopetrotic skeletal changes from repeated administration of high doses of the aminobisphosphonate zoledronic acid (zoledronate) given to children with osteogenesis imperfecta.


Assuntos
Fraturas Ósseas , Osteopetrose , Criança , Humanos , Osteopetrose/genética , Osteoclastos , Ácido Zoledrônico , Crânio
7.
JBMR Plus ; 7(4): e10717, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37065631

RESUMO

Osteoblast Wnt/ß-catenin signaling conditions skeletal development and health. Bone formation is stimulated when on the osteoblast surface a Wnt binds to low-density lipoprotein receptor-related protein 5 (LRP5) or 6 (LRP6), in turn coupled to a frizzled receptor. Sclerostin and dickkopf1 inhibit osteogenesis if either links selectively to the first ß-propeller of LRP5 or LRP6, thereby disassociating these cognate co-receptors from the frizzled receptor. Sixteen heterozygous mutations identified since 2002 within LRP5 and three heterozygous mutations identified since 2019 within LRP6 prevent this binding of sclerostin or dickkopf1 and account for the exceptionally rare, but highly instructive, autosomal dominant disorders called LRP5 and LRP6 high bone mass (HBM). Herein, we characterize LRP6 HBM in the first large affected family. Their novel heterozygous LRP6 missense mutation (c.719C>T, p.Thr240Ile) was present in two middle-aged sisters and three of their sons. They considered themselves healthy. Their broad jaw and torus palatinus developed during childhood and, contrary to the two previous reports of LRP6 HBM, the appearance of their adult dentition was unremarkable. Skeletal modeling, defined radiographically, supported classification as an endosteal hyperostosis. Areal bone mineral density (g/cm2) of the lumbar spine and total hip featured accelerated increases reaching Z-scores of ~ +8 and +6, respectively, although biochemical markers of bone formation were normal. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
J Clin Endocrinol Metab ; 108(11): 2990-2998, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084401

RESUMO

CONTEXT: In an open-label, randomized, controlled, phase 3 trial in 61 children aged 1 to 12 years with X-linked hypophosphatemia (XLH), burosumab improved rickets vs continuing conventional therapy with active vitamin D and phosphate. OBJECTIVE: We conducted an analysis to determine whether skeletal responses differed when switching to burosumab vs continuing higher or lower doses of conventional therapy. METHODS: Conventional therapy dose groups were defined as higher-dose phosphate [greater than 40 mg/kg] (HPi), lower-dose phosphate [40 mg/kg or less] (LPi), higher-dose alfacalcidol [greater than 60 ng/kg] or calcitriol [greater than 30 ng/kg] (HD), and lower-dose alfacalcidol [60 ng/kg or less] or calcitriol [30 ng/kg or less] (LD). RESULTS: At week 64, the Radiographic Global Impression of Change (RGI-C) for rickets was higher (better) in children randomly assigned to burosumab vs conventional therapy for all prebaseline dose groups: HPi (+1.72 vs +0.67), LPi (+2.14 vs +1.08), HD (+1.90 vs +0.94), LD (+2.11 vs +1.06). At week 64, the RGI-C for rickets was also higher in children randomly assigned to burosumab (+2.06) vs conventional therapy for all on-study dose groups: HPi (+1.03), LPi (+1.05), HD (+1.45), LD (+0.72). Serum alkaline phosphatase (ALP) also decreased in the burosumab-treated patients more than in the conventional therapy group, regardless of on-study phosphate and active vitamin D doses. CONCLUSION: Prior phosphate or active vitamin D doses did not influence treatment response after switching to burosumab among children with XLH and active radiographic rickets. Switching from conventional therapy to burosumab improved rickets and serum ALP more than continuing either higher or lower doses of phosphate or active vitamin D.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Criança , Humanos , Fosfatos , Anticorpos Monoclonais/uso terapêutico , Vitamina D/uso terapêutico , Calcitriol/uso terapêutico , Vitaminas/uso terapêutico , Fatores de Crescimento de Fibroblastos
9.
Bone ; 171: 116737, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933855

RESUMO

Discovery in 1904 of the disorder initially called "marble bones", then in 1926 more appropriately referred to as "osteopetrosis", is attributed to Heinrich E. Albers-Schönberg (1865-1921), the first radiologist. He used the new technique of "Röntgenographie" to report in a young man the radiographic hallmarks of this osteopathy. Clinical descriptions of lethal forms of osteopetrosis had apparently been published earlier by others. In 1926, "osteopetrosis" (stony or petrified bones) replaced "marble bone disease" because the skeletal fragility resembled limestone more than marble. In 1936, despite fewer than 80 reported patients, a fundamental defect in hematopoiesis, secondarily impacting the entire skeleton, was hypothesized. By 1938, the signature histopathological finding of osteopetrosis was recognized -- persistence of unresorbed calcified growth plate cartilage. Also, it was apparent that besides lethal autosomal recessive osteopetrosis a less severe form was "handed down directly from generation to generation". In 1965, quantitative, but also qualitative, defects in osteoclasts became apparent. Here, I review the discovery and early understanding of osteopetrosis. Characterization of this disorder commencing at the beginning of the past century would support the aphorism of Sir William Osler (1849-1919): "Clinics Are Laboratories; Laboratories Of The Highest Order". As featured in this special issue of Bone, the osteopetroses would prove remarkably informative about the formation and function of the cells responsible for skeletal resorption.


Assuntos
Osteopetrose , Humanos , Osteopetrose/diagnóstico por imagem , Osteopetrose/patologia , Carbonato de Cálcio , Osso e Ossos/patologia , Osteoclastos/patologia
10.
Bone ; 170: 116698, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740137

RESUMO

INTRODUCTION: Ultra-rare mendelian osteolytic disorders caused by different length in-frame activating duplications within exon 1 of TNFRSF11A encoding receptor activator of nuclear factor-kappa B (RANK) comprise familial expansile osteolysis (FEO), expansile skeletal hyperphosphatasia (ESH), early-onset familial Paget's disease of bone (PDB2), juvenile Paget's disease 2 (JPD2), and panostotic expansile bone disease (PEBD). FEO typically presents with childhood-onset deafness followed by resorption of permanent dentition, and then appendicular bone pain, fractures, and deformities from progressive focal expansile osteolytic lesions emerging from a background of generalized high bone turnover. An 18-bp duplication in TNFRSF11A has been reported in all kindreds with FEO, whereas a 12-bp duplication was found in the young man with PEBD complicated by a massive jaw tumor. We report the clinical course and successful treatment with bisphosphonates of a girl with the 12-bp duplication yet a skeletal phenotype seemingly milder than PEBD. CASE PRESENTATION AND DISCUSSION: This 10-year-old girl presented for dental and orthodontic treatment and was found to have progressive external tooth root resorption. Speech delay was identified at age 18 months, and audiological evaluation showed both conductive and sensorineural hearing loss subsequently treated with a cochlear implant at age 3 years. Biochemical studies indicated increased bone turnover with elevated urinary N-telopeptide levels and serum alkaline phosphatase in the upper normal range. Low lumbar spine bone mineral density (BMD) was revealed by dual-energy X-ray absorptiometry, but whole-body Technetium-99 m bone scintigraphy was normal. Genetic testing identified the identical de novo 12-bp duplication within exon 1 of TNFRSF11A harbored by the young man with PEBD and massive jaw tumor. Bisphosphonate treatment, initiated with one dose of intravenous zoledronic acid that caused prolonged hypocalcemia, then comprised weekly oral alendronate that decreased bone turnover markers and normalized her BMD. CONCLUSION: Constitutive activation of RANK signaling should be considered a possible cause in any young person with rapid bone turnover, particularly in the context of early-onset deafness and/or root resorption of permanent teeth. Early diagnosis and anti-resorptive treatment, given judiciously to avoid sudden and prolonged hypocalcemia, may prevent further skeletal disease.


Assuntos
Doenças Ósseas Metabólicas , Surdez , Hipocalcemia , Osteíte Deformante , Reabsorção da Raiz , Feminino , Humanos , Doenças Ósseas Metabólicas/genética , Difosfonatos , NF-kappa B , Osteíte Deformante/diagnóstico por imagem , Osteíte Deformante/tratamento farmacológico , Osteíte Deformante/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Criança
11.
Bone ; 169: 116684, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36709914

RESUMO

Carbonic anhydrase II deficiency (OMIM # 259730), initially called "osteopetrosis with renal tubular acidosis and cerebral calcification syndrome", reveals an important role for the enzyme carbonic anhydrase II (CA II) in osteoclast and renal tubule function. Discovered in 1972 and subsequently given various names, CA II deficiency now describes >100 affected individuals encountered predominantly from the Middle East and Mediterranean region. In 1983, CA II deficiency emerged as the first osteopetrosis (OPT) understood metabolically, and in 1991 the first understood molecularly. CA II deficiency is the paradigm OPT featuring failure of osteoclasts to resorb bone due to inability to acidify their pericellular milieu. The disorder presents late in infancy or early in childhood with fracturing, developmental delay, weakness, short stature, and/or cranial nerve compression and palsy. Mental retardation is common. The skeletal findings may improve by adult life, and CA II deficiency can be associated with a normal life-span. Therefore, it has been considered an "intermediate" type of OPT. In CA II deficiency, OPT is uniquely accompanied by renal tubular acidosis (RTA) of proximal, distal, or combined type featuring hyperchloremic metabolic acidosis, rarely with hypokalemia and paralysis. Cerebral calcification uniquely appears in early childhood. The etiology is bi-allelic loss-of-function mutations of CA2 that encodes CA II. Prenatal diagnosis requires mutational analysis of CA2. Although this enzymopathy reveals how CA II is important for the skeleton and kidney tubule, the pathogenesis of the mental subnormality and cerebral calcification is less well understood. Several mouse models of CA II deficiency have shown growth hormone deficiency, yet currently there is no standard pharmacologic therapy for patients. Treatment of the systemic acidosis is often begun when growth is complete. Although CA II deficiency is an "osteoclast-rich" OPT, and therefore transplantation of healthy osteoclasts can improve the skeletal disease, the RTA and central nervous system difficulties persist.


Assuntos
Acidose Tubular Renal , Calcinose , Anidrase Carbônica II , Anidrases Carbônicas , Deficiência Intelectual , Osteopetrose , Distúrbios Congênitos do Ciclo da Ureia , Animais , Pré-Escolar , Feminino , Humanos , Camundongos , Gravidez , Acidose Tubular Renal/complicações , Acidose Tubular Renal/genética , Calcinose/genética , Anidrases Carbônicas/genética , Deficiência Intelectual/genética , Osteopetrose/genética , Distúrbios Congênitos do Ciclo da Ureia/complicações , Anidrase Carbônica II/deficiência
13.
JBMR Plus ; 6(12): e10692, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36530187

RESUMO

Inactivating mutations of the gene coding for phosphate-regulating endopeptidase homolog X-linked (PHEX) cause X-linked hypophosphatemia (XLH). A novel PHEX variant, c.*231A>G; exon 13-15 duplication, has emerged as a common cause of XLH in North America, emphasizing the importance of delineating its clinical presentation. Here, a comprehensive description of a five-generation American kindred of 22 treatment-naïve individuals harboring the c.*231A>G; exon 13-15 duplication is provided. After XLH was diagnosed in the proposita, pro-active family members used social media to facilitate a timely assessment of their medical history. Most had normal height and 50% were normophosphatemic. Thirteen had been given a diagnosis other than XLH, most commonly ankylosing spondylitis, and XLH was only established after genetic testing. The prevalent phenotypic characteristics of c.*231A>G; exon 13-15 duplication were disorders of dentition (68.2%), enthesopathies (54.5%), fractures/bone and joint conditions (50%), lower-limb deformities (40.9%), hearing loss/tinnitus (40.9%), gait abnormalities (22.7%), kidney stones/nephrocalcinosis (18.2%), chest wall disorders (9.1%), and Chiari/skull malformation (4.5%). More affected males than females, respectively, had gait abnormalities (42.9% versus 13.3%), lower-limb deformities (71.4% versus 26.7%), and enthesopathies (85.7% versus 40%). Single phenotypes, observed exclusively in females, occurred in 22.7% and multiple phenotypes in 77.3% of the cohort. However, as many as six characteristics could develop in either affected males or females. Our findings will improve diagnostic and monitoring protocols for XLH. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
JBMR Plus ; 6(8): e10663, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991533

RESUMO

Dysosteosclerosis (DSS), the term coined in 1968 for ultrarare dysplasia of the skeleton featuring platyspondyly with focal appendicular osteosclerosis, has become generic by encompassing the genetic heterogeneity recently reported for this phenotype. We studied four unrelated Turkish patients with DSS to advance understanding of the new nosology. Patient 1 suffered femur fractures beginning at age 1 year. DSS was suspected from marked metaphyseal osteosclerosis in early childhood and subsequently platyspondyly accompanying patchy osteosclerosis of her appendicular skeleton. She harbored in SLC29A3, in 2012 the first gene associated with DSS, a unique homozygous duplication (c.303_320dup, p.102_107dupYFESYL). Patient 2 presented similarly with fractures and metaphyseal osteosclerosis but with no platyspondyly at age 2 months. She was homozygous for a novel nonsense mutation in SLC29A3 (c.1284C>G, p.Tyr428*). Patient 3 had ocular disease at age 2 years, presented for short stature at age 11 years, and did not begin to fracture until age 16 years. Radiographs showed mild platyspondyly and focal metaphyseal and femoral osteosclerosis. She was homozygous for a unique splice site mutation in TNFRSF11A (c.616+3A>G). Patient 4 at age 2 years manifested developmental delay and frequent infections but did not fracture. He had unique metadiaphyseal splaying and osteosclerosis, vertebral end-plate osteosclerosis, and cortical thinning of long bones but no mutation was detected of SLC29A3, TNFRSF11A, TCIRG1, LRRK1, or CSF1R associated with DSS. We find that DSS from defective SLC29A3 presents earliest and with fractures. DSS from compromised TNFRSF11A can lead to optic atrophy as an early finding. Negative mutation analysis in patient 4 suggests further genetic heterogeneity underlying the skeletal phenotype of DSS. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

15.
Nat Rev Endocrinol ; 18(8): 473-489, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578027

RESUMO

The physiological process of biomineralization is complex and deviation from it leads to a variety of diseases. Progress in the past 10 years has enhanced understanding of the genetic, molecular and cellular pathophysiology underlying these disorders; sometimes, this knowledge has both facilitated restoration of health and clarified the very nature of biomineralization as it occurs in humans. In this Review, we consider the principal regulators of mineralization and crystallization, and how dysregulation of these processes can lead to human disease. The knowledge acquired to date and gaps still to be filled are highlighted. The disorders of mineralization discussed comprise a broad spectrum of conditions that encompass bone disorders associated with alterations of mineral quantity and quality, as well as disorders of extraskeletal mineralization (hyperphosphataemic familial tumoural calcinosis). Included are disorders of alkaline phosphatase (hypophosphatasia) and phosphate homeostasis (X-linked hypophosphataemic rickets, fluorosis, rickets and osteomalacia). Furthermore, crystallopathies are covered as well as arterial and renal calcification. This Review discusses the current knowledge of biomineralization derived from basic and clinical research and points to future studies that will lead to new therapeutic approaches for biomineralization disorders.


Assuntos
Hipofosfatasia , Sistema Musculoesquelético , Osteomalacia , Fosfatase Alcalina , Biomineralização , Humanos
16.
J Clin Endocrinol Metab ; 107(8): e3241-e3253, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35533340

RESUMO

CONTEXT: Younger age at treatment onset with conventional therapy (phosphate salts and active vitamin D; Pi/D) is associated with improved growth and skeletal outcomes in children with X-linked hypophosphatemia (XLH). The effect of age on burosumab efficacy and safety in XLH is unknown. OBJECTIVE: This work aimed to explore the efficacy and safety of burosumab vs Pi/D in younger (< 5 years) and older (5-12 years) children with XLH. METHODS: This post hoc analysis of a 64-week, open-label, randomized controlled study took place at 16 academic centers. Sixty-one children aged 1 to 12 years with XLH (younger, n = 26; older, n = 35) participated. Children received burosumab starting at 0.8 mg/kg every 2 weeks (younger, n = 14; older, n = 15) or continued Pi/D individually titrated per recommended guidelines (younger, n = 12; older, n = 20). The main outcome measure included the least squares means difference (LSMD) in Radiographic Global Impression of Change (RGI-C) rickets total score from baseline to week 64. RESULTS: The LSMD in outcomes through 64 weeks on burosumab vs conventional therapy by age group were as follows: RGI-C rickets total score (younger, +0.90; older, +1.07), total Rickets Severity Score (younger, -0.86; older, -1.44), RGI-C lower limb deformity score (younger, +1.02; older, +0.91), recumbent length or standing height Z-score (younger, +0.20; older, +0.09), and serum alkaline phosphatase (ALP) (younger, -31.15% of upper normal limit [ULN]; older, -52.11% of ULN). On burosumab, dental abscesses were not reported in younger children but were in 53% of older children. CONCLUSION: Burosumab appears to improve outcomes both in younger and older children with XLH, including rickets, lower limb deformities, growth, and ALP, compared with Pi/D.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Adolescente , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados/uso terapêutico , Criança , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Fatores de Crescimento de Fibroblastos , Humanos
17.
Bone ; 160: 116421, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429657

RESUMO

Inhalant use disorder is a psychiatric condition characterized by repeated deliberate inhalation from among a broad range of household and industrial chemical products with the intention of producing psychoactive effects. In addition to acute intoxication, prolonged inhalation of fluorinated compounds can cause skeletal fluorosis (SF). We report a young woman referred for hypophosphatasemia and carrying a heterozygous ALPL gene variant (c.457T>C, p.Trp153Arg) associated with hypophosphatasia, the heritable metabolic bone disease featuring impaired skeletal mineralization, who instead suffered from SF. Manifestations of her SF included recurrent articular pain, axial osteosclerosis, elevated bone mineral density, maxillary exostoses, and multifocal periarticular calcifications. SF was suspected when a long history was discovered of 'huffing' a computer cleaner containing 1,1-difluoroethane. Investigation revealed markedly elevated serum and urine levels of F-. Histopathology and imaging techniques including backscattered electron mode scanning electron microscopy, X-ray microtomography, energy dispersive and wavelength dispersive X-ray emission microanalysis, and polarized light microscopy revealed that her periarticular calcifications were dystrophic deposition of giant pseudo-crystals of francolite, a carbonate-rich fluorapatite. Identifying unusual circumstances of F- exposure is key for diagnosing non-endemic SF. Increased awareness of the disorder can be lifesaving.


Assuntos
Doenças Ósseas Metabólicas , Calcinose , Hipofosfatasia , Osteoartrite , Osteosclerose , Fosfatase Alcalina/genética , Feminino , Humanos , Hidrocarbonetos Fluorados , Hipofosfatasia/genética , Osteosclerose/induzido quimicamente , Osteosclerose/diagnóstico por imagem
18.
Bone ; 154: 116204, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547524

RESUMO

Hypophosphatasia (HPP) is the heritable dento-osseous disease caused by loss-of-function mutation(s) of the gene ALPL that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). TNSALP is a cell-surface homodimeric phosphomonoester phosphohydrolase expressed in healthy people especially in the skeleton, liver, kidneys, and developing teeth. In HPP, diminished TNSALP activity leads to extracellular accumulation of its natural substrates including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5'-phosphate (PLP), the principal circulating form of vitamin B6 (B6). Autosomal dominant and autosomal recessive inheritance involving >450 usually missense defects scattered throughout ALPL largely explains the remarkably broad-ranging severity of this inborn-error-of-metabolism. In 1985 when we identified elevated plasma PLP as a biochemical hallmark of HPP, all 14 investigated affected children and adults had markedly increased PLP levels. However, pyridoxal (PL), the dephosphorylated form of PLP that enters cells to cofactor many enzymatic reactions, was not low but often inexplicably elevated. Levels of pyridoxic acid (PA), the B6 degradation product quantified to assess B6 sufficiency, were unremarkable. Canonical signs or symptoms of B6 deficiency or toxicity were absent. B6-dependent seizures in infants with life-threatening HPP were later explained by their profound deficiency of TNSALP activity blocking PLP dephosphorylation to PL and diminishing gamma-aminobutyric acid synthesis in the brain. Now, there is speculation that altered B6 metabolism causes further clinical complications in HPP. Herein, we assessed the plasma PL and PA levels accompanying previously reported elevated plasma PLP concentrations in 150 children and adolescents with HPP. Their mean (SD) plasma PL level was nearly double the mean for our healthy pediatric controls: 66.7 (59.0) nM versus 37.1 (22.2) nM (P < 0.0001), respectively. Their PA levels were broader than our pediatric control range, but their mean value was normal; 40.2 (25.1) nM versus 39.3 (9.9) nM (P = 0.7793), respectively. In contrast, adults with HPP often had plasma PL and PA levels suggestive of dietary B6 insufficiency. We discuss why the B6 levels of our pediatric patients with HPP would not cause B6 toxicity or deficiency, whereas in affected adults dietary B6 insufficiency can develop.


Assuntos
Hipofosfatasia , Adolescente , Adulto , Fosfatase Alcalina/metabolismo , Osso e Ossos/metabolismo , Criança , Humanos , Hipofosfatasia/diagnóstico , Mutação/genética , Vitamina B 6 , Vitaminas
19.
J Clin Endocrinol Metab ; 107(3): 813-824, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34636899

RESUMO

PURPOSE: In X-linked hypophosphatemia (XLH), excess fibroblast growth factor-23 causes hypophosphatemia and low calcitriol, leading to musculoskeletal disease with clinical consequences. XLH treatment options include conventional oral phosphate with active vitamin D, or monotherapy with burosumab, a monoclonal antibody approved to treat children and adults with XLH. We have previously reported outcomes up to 64 weeks, and here we report safety and efficacy follow-up results up to 160 weeks from an open-label, multicenter, randomized, dose-finding trial of burosumab for 5- to 12-year-old children with XLH. METHODS: After 1 week of conventional therapy washout, patients were randomized 1:1 to burosumab every 2 weeks (Q2W) or every 4 weeks (Q4W) for 64 weeks, with dosing titrated based on fasting serum phosphorus levels between baseline and week 16. From week 66 to week 160, all patients received Q2W burosumab. RESULTS: Twenty-six children were randomized initially into each Q2W and Q4W group and all completed treatment to week 160. In 41 children with open distal femoral and proximal tibial growth plates (from both treatment groups), total Rickets Severity Score significantly decreased by 0.9 ±â€…0.1 (least squares mean ±â€…SE; P < 0.0001) from baseline to week 160. Fasting serum phosphorus increases were sustained by burosumab therapy throughout the study, with an overall population mean (SD) of 3.35 (0.39) mg/dL, within the pediatric normal range (3.2-6.1 mg/dL) at week 160 (mean change from baseline P < 0.0001). Most adverse events were mild to moderate in severity. MAIN CONCLUSIONS: In children with XLH, burosumab administration for 160 weeks improved phosphate homeostasis and rickets and was well-tolerated. Long-term safety was consistent with the reported safety profile of burosumab. CLINICALTRIALS.GOV: NCT02163577.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Fator de Crescimento de Fibroblastos 23/antagonistas & inibidores , Anticorpos Monoclonais Humanizados/efeitos adversos , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Raquitismo Hipofosfatêmico Familiar/sangue , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Feminino , Fator de Crescimento de Fibroblastos 23/metabolismo , Humanos , Masculino , Fosfatos/sangue , Fosfatos/metabolismo , Reabsorção Renal/efeitos dos fármacos , Índice de Gravidade de Doença
20.
J Musculoskelet Neuronal Interact ; 21(4): 584-589, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854399

RESUMO

We report a 41-year-old man diagnosed with the adult form of hypophosphatasia (HPP) and treated for 4 years with less frequent than conventional daily doses of teriparatide (TPTD). He presented with a history of three low-energy fractures and low bone mineral density (BMD) ineffectively treated with bisphosphonate. We identified within ALPL, the gene that encodes the homodimeric "tissue-nonspecific" isoenzyme of alkaline phosphatase (ALP) and underlies HPP, a heterozygous missense mutation (c.455 G>A→R135H). Characteristic painful periarticular calcification removed at a shoulder did not recur. However, access to medical treatment with asfotase alfa (AA) was denied. After he sustained a low-energy metatarsal fracture, we administered TPTD subcutaneously "off-label" at 20 µg/d. An elbow fracture occurred two months later. Five months afterwards, due to his limited number of approved TPTD doses, TPTD treatment was extended using alternate-day dosing. Although his serum ALP activity did not increase (33-48 U/l; reference range 40-120) with 4 years of TPTD treatment, his BMD improved 15% in the lumbar spine and 6% in the femoral neck with no further fractures. Our experience represents success overcoming two prescription deadlocks; AA was denied for adult HPP, and TPTD was not to be administered daily for more than two years.


Assuntos
Fraturas Ósseas , Hipofosfatasia , Adulto , Fosfatase Alcalina , Difosfonatos , Fraturas Ósseas/tratamento farmacológico , Humanos , Hipofosfatasia/tratamento farmacológico , Hipofosfatasia/genética , Vértebras Lombares/diagnóstico por imagem , Masculino , Teriparatida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA